Skip to main content

Luminescent Lanthanide Coordination Zippers with Dense-Packed Structures for High Energy Transfer Efficiencies

  • Chapter
  • First Online:
  • 325 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Novel Eu(III) coordination polymers [Eu(hfa)3(dpt)] n [dpt: 2,5-bis(diphenylphosphoryl)thiophene] and [Eu(hfa)3(dpedot)] n [dpedot: 3,4-bis(diphenylphosphoryl)ethylenedioxythiophene] were designed for dense structures with high energy transfer efficiency. The zig-zag orientation of single polymer chains induced the formation of dense-packed coordination structures with multiple inter-molecular hydrogen bonds. These polymers exhibited high intrinsic emission quantum yields (~80%) due to their asymmetrical and low-vibrational coordination structures. The significant energy transfer efficiencies of up to 80% were also achieved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn, A.B. Holmes, Nature 347, 539–541 (1990)

    Article  CAS  Google Scholar 

  2. C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, 99–117 (2002)

    Article  CAS  Google Scholar 

  3. E.G. Moore, A.P.S. Samuel, K.N. Raymond, Acc. Chem. Res. 42, 542–552 (2009)

    Article  CAS  Google Scholar 

  4. S.V. Eliseeva, J.-C.G. Bünzli, Chem. Soc. Rev. 39, 189–227 (2010)

    Article  CAS  Google Scholar 

  5. M. Schaferling, Angew. Chem. Int. Ed. 51, 3532–3554 (2012)

    Article  Google Scholar 

  6. J.F. Callan, A.P. de Silva, D.C. Magri, Tetrahedron 61, 8551–8588 (2005)

    Article  CAS  Google Scholar 

  7. A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, Chem. Rev. 97, 1515–1566 (1997)

    Article  Google Scholar 

  8. S.W. Thomas, G.D. Joly, T.M. Swager, Chem. Rev. 107, 1339–1386 (2007)

    Article  CAS  Google Scholar 

  9. C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, J. Appl. Phys. 90, 5048–5051 (2001)

    Article  CAS  Google Scholar 

  10. A. de Bettencourt-Dias, Dalton Trans. 22, 2229–2241 (2007)

    Article  Google Scholar 

  11. J.-C.G. Bünzli, C. Piguet, Chem. Soc. Rev. 34, 1048–1077 (2005)

    Article  Google Scholar 

  12. K. Binnemans, Chem. Rev. 109, 4283–4374 (2009)

    Article  CAS  Google Scholar 

  13. T. Gunnlaugsson, M. Glynn, G.M. Tocci, P.E. Kruger, F.M. Pfeffer, Coord. Chem. Rev. 250, 3094–3117 (2006)

    Article  CAS  Google Scholar 

  14. G.E. Khalil, K. Lau, G.D. Phelan, B. Carlson, M. Gouterman, J.B. Callis, L.R. Dalton, Rev. Sci. Instrum. 75, 192–206 (2004)

    Article  CAS  Google Scholar 

  15. N.B.D. Lima, S.M.C. Goncalves, S.A. Junior, A.M. Simas, Sci. Rep. 3 (2013)

    Google Scholar 

  16. A. de Bettencourt-Dias, P.S. Barber, S. Viswanathan, Coord. Chem. Rev. 273, 165–200 (2014)

    Article  Google Scholar 

  17. L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, E. Tondello, Coord. Chem. Rev. 254, 487–505 (2010)

    Article  CAS  Google Scholar 

  18. K. Binnemans, R. Van Deun, C. Gorller-Walrand, S.R. Collinson, F. Martin, D.W. Bruce, C. Wickleder, Phys. Chem. Chem. Phys. 2, 3753–3757 (2000)

    Article  CAS  Google Scholar 

  19. M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542–1548 (2002)

    Article  CAS  Google Scholar 

  20. H.B. Zhang, L.J. Zhou, J. Wei, Z.H. Li, P. Lin, S.W. Du, J. Mater. Chem. 22, 21210–21217 (2012)

    Article  CAS  Google Scholar 

  21. M.S. Liu, Q.Y. Yu, Y.P. Cai, C.Y. Su, X.M. Lin, X.X. Zhou, J.W. Cai, Cryst. Growth Des. 8, 4083–4091 (2008)

    Article  CAS  Google Scholar 

  22. J. Rocha, L.D. Carlos, F.A.A. Paz, D. Ananias, Chem. Soc. Rev. 40, 926–940 (2011)

    Article  CAS  Google Scholar 

  23. S.V. Eliseeva, D.N. Pleshkov, K.A. Lyssenko, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, Inorg. Chem. 49, 9300–9311 (2010)

    Article  CAS  Google Scholar 

  24. K. Miyata, T. Ohba, A. Kobayashi, M. Kato, T. Nakanishi, K. Fushimi, Y. Hasegawa, ChemPlusChem 77, 277–280 (2012)

    Article  CAS  Google Scholar 

  25. A. D’Aleo, F. Pointillart, L. Ouahab, C. Andraud, O. Maury, Coord. Chem. Rev. 256, 1604–1620 (2012)

    Article  Google Scholar 

  26. S.V. Eliseeva, O.V. Kotova, F. Gumy, S.N. Semenov, V.G. Kessler, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, J. Phys. Chem. A 112, 3614–3626 (2008)

    Article  CAS  Google Scholar 

  27. E.R. Trivedi, S.V. Eliseeva, J. Jankolovits, M.M. Olmstead, S. Petoud, V.L. Pecoraro, J. Am. Chem. Soc. 136, 1526–1534 (2014)

    Article  CAS  Google Scholar 

  28. Y. Hasegawa, R. Hieda, K. Miyata, T. Nakagawa, T. Kawai, Eur. J. Inorg. Chem. 32, 4978–4984 (2011)

    Article  Google Scholar 

  29. J.D. Xu, E. Radkov, M. Ziegler, K.N. Raymond, Inorg. Chem. 39, 4156–4164 (2000)

    Article  CAS  Google Scholar 

  30. A. Aebischer, F. Gumy, J.-C.G. Bünzli, Phys. Chem. Chem. Phys. 11, 1346–1353 (2009)

    Article  CAS  Google Scholar 

  31. R. Pavithran, N.S.S. Kumar, S. Biju, M.L.P. Reddy, S.A. Junior, R.O. Freire, Inorg. Chem. 45, 2184–2192 (2006)

    Article  CAS  Google Scholar 

  32. K. Binnemans, Coord. Chem. Rev. 295, 1–45 (2015)

    Article  CAS  Google Scholar 

  33. G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford Univ. Press, 1999)

    Google Scholar 

  34. S.F. Mason, R.D. Peacock, B. Stewart, Chem. Phys. Lett. 29, 149–153 (1974)

    Article  CAS  Google Scholar 

  35. S.F. Mason, R.D. Peacock, B. Stewart, Mol. Phys. 30, 1829–1841 (1975)

    Article  CAS  Google Scholar 

  36. T. Nakagawa, Y. Hasegawa, T. Kawai, J. Phys. Chem. A 112, 5096–5103 (2008)

    Article  CAS  Google Scholar 

  37. Y. Hasegawa, N. Sato, Y. Hirai, T. Nakanishi, Y. Kitagawa, A. Kobayashi, M. Kato, T. Seki, H. Ito, K. Fushimi, J. Phys. Chem. A 119, 4825–4833 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuichi Hirai .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirai, Y. (2018). Luminescent Lanthanide Coordination Zippers with Dense-Packed Structures for High Energy Transfer Efficiencies. In: Assembled Lanthanide Complexes with Advanced Photophysical Properties. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8932-9_2

Download citation

Publish with us

Policies and ethics