Luminescent Lanthanide Coordination Zippers with Dense-Packed Structures for High Energy Transfer Efficiencies

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Novel Eu(III) coordination polymers [Eu(hfa)3(dpt)] n [dpt: 2,5-bis(diphenylphosphoryl)thiophene] and [Eu(hfa)3(dpedot)] n [dpedot: 3,4-bis(diphenylphosphoryl)ethylenedioxythiophene] were designed for dense structures with high energy transfer efficiency. The zig-zag orientation of single polymer chains induced the formation of dense-packed coordination structures with multiple inter-molecular hydrogen bonds. These polymers exhibited high intrinsic emission quantum yields (~80%) due to their asymmetrical and low-vibrational coordination structures. The significant energy transfer efficiencies of up to 80% were also achieved.

Keywords

Europium Coordination polymer Luminescence Energy transfer 

References

  1. 1.
    J.H. Burroughes, D.D.C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R.H. Friend, P.L. Burn, A.B. Holmes, Nature 347, 539–541 (1990)CrossRefGoogle Scholar
  2. 2.
    C.D. Dimitrakopoulos, P.R.L. Malenfant, Adv. Mater. 14, 99–117 (2002)CrossRefGoogle Scholar
  3. 3.
    E.G. Moore, A.P.S. Samuel, K.N. Raymond, Acc. Chem. Res. 42, 542–552 (2009)CrossRefGoogle Scholar
  4. 4.
    S.V. Eliseeva, J.-C.G. Bünzli, Chem. Soc. Rev. 39, 189–227 (2010)CrossRefGoogle Scholar
  5. 5.
    M. Schaferling, Angew. Chem. Int. Ed. 51, 3532–3554 (2012)CrossRefGoogle Scholar
  6. 6.
    J.F. Callan, A.P. de Silva, D.C. Magri, Tetrahedron 61, 8551–8588 (2005)CrossRefGoogle Scholar
  7. 7.
    A.P. de Silva, H.Q.N. Gunaratne, T. Gunnlaugsson, A.J.M. Huxley, C.P. McCoy, J.T. Rademacher, T.E. Rice, Chem. Rev. 97, 1515–1566 (1997)CrossRefGoogle Scholar
  8. 8.
    S.W. Thomas, G.D. Joly, T.M. Swager, Chem. Rev. 107, 1339–1386 (2007)CrossRefGoogle Scholar
  9. 9.
    C. Adachi, M.A. Baldo, M.E. Thompson, S.R. Forrest, J. Appl. Phys. 90, 5048–5051 (2001)CrossRefGoogle Scholar
  10. 10.
    A. de Bettencourt-Dias, Dalton Trans. 22, 2229–2241 (2007)CrossRefGoogle Scholar
  11. 11.
    J.-C.G. Bünzli, C. Piguet, Chem. Soc. Rev. 34, 1048–1077 (2005)CrossRefGoogle Scholar
  12. 12.
    K. Binnemans, Chem. Rev. 109, 4283–4374 (2009)CrossRefGoogle Scholar
  13. 13.
    T. Gunnlaugsson, M. Glynn, G.M. Tocci, P.E. Kruger, F.M. Pfeffer, Coord. Chem. Rev. 250, 3094–3117 (2006)CrossRefGoogle Scholar
  14. 14.
    G.E. Khalil, K. Lau, G.D. Phelan, B. Carlson, M. Gouterman, J.B. Callis, L.R. Dalton, Rev. Sci. Instrum. 75, 192–206 (2004)CrossRefGoogle Scholar
  15. 15.
    N.B.D. Lima, S.M.C. Goncalves, S.A. Junior, A.M. Simas, Sci. Rep. 3 (2013)Google Scholar
  16. 16.
    A. de Bettencourt-Dias, P.S. Barber, S. Viswanathan, Coord. Chem. Rev. 273, 165–200 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Armelao, S. Quici, F. Barigelletti, G. Accorsi, G. Bottaro, M. Cavazzini, E. Tondello, Coord. Chem. Rev. 254, 487–505 (2010)CrossRefGoogle Scholar
  18. 18.
    K. Binnemans, R. Van Deun, C. Gorller-Walrand, S.R. Collinson, F. Martin, D.W. Bruce, C. Wickleder, Phys. Chem. Chem. Phys. 2, 3753–3757 (2000)CrossRefGoogle Scholar
  19. 19.
    M.H.V. Werts, R.T.F. Jukes, J.W. Verhoeven, Phys. Chem. Chem. Phys. 4, 1542–1548 (2002)CrossRefGoogle Scholar
  20. 20.
    H.B. Zhang, L.J. Zhou, J. Wei, Z.H. Li, P. Lin, S.W. Du, J. Mater. Chem. 22, 21210–21217 (2012)CrossRefGoogle Scholar
  21. 21.
    M.S. Liu, Q.Y. Yu, Y.P. Cai, C.Y. Su, X.M. Lin, X.X. Zhou, J.W. Cai, Cryst. Growth Des. 8, 4083–4091 (2008)CrossRefGoogle Scholar
  22. 22.
    J. Rocha, L.D. Carlos, F.A.A. Paz, D. Ananias, Chem. Soc. Rev. 40, 926–940 (2011)CrossRefGoogle Scholar
  23. 23.
    S.V. Eliseeva, D.N. Pleshkov, K.A. Lyssenko, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, Inorg. Chem. 49, 9300–9311 (2010)CrossRefGoogle Scholar
  24. 24.
    K. Miyata, T. Ohba, A. Kobayashi, M. Kato, T. Nakanishi, K. Fushimi, Y. Hasegawa, ChemPlusChem 77, 277–280 (2012)CrossRefGoogle Scholar
  25. 25.
    A. D’Aleo, F. Pointillart, L. Ouahab, C. Andraud, O. Maury, Coord. Chem. Rev. 256, 1604–1620 (2012)CrossRefGoogle Scholar
  26. 26.
    S.V. Eliseeva, O.V. Kotova, F. Gumy, S.N. Semenov, V.G. Kessler, L.S. Lepnev, J.-C.G. Bünzli, N.P. Kuzmina, J. Phys. Chem. A 112, 3614–3626 (2008)CrossRefGoogle Scholar
  27. 27.
    E.R. Trivedi, S.V. Eliseeva, J. Jankolovits, M.M. Olmstead, S. Petoud, V.L. Pecoraro, J. Am. Chem. Soc. 136, 1526–1534 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Hasegawa, R. Hieda, K. Miyata, T. Nakagawa, T. Kawai, Eur. J. Inorg. Chem. 32, 4978–4984 (2011)CrossRefGoogle Scholar
  29. 29.
    J.D. Xu, E. Radkov, M. Ziegler, K.N. Raymond, Inorg. Chem. 39, 4156–4164 (2000)CrossRefGoogle Scholar
  30. 30.
    A. Aebischer, F. Gumy, J.-C.G. Bünzli, Phys. Chem. Chem. Phys. 11, 1346–1353 (2009)CrossRefGoogle Scholar
  31. 31.
    R. Pavithran, N.S.S. Kumar, S. Biju, M.L.P. Reddy, S.A. Junior, R.O. Freire, Inorg. Chem. 45, 2184–2192 (2006)CrossRefGoogle Scholar
  32. 32.
    K. Binnemans, Coord. Chem. Rev. 295, 1–45 (2015)CrossRefGoogle Scholar
  33. 33.
    G.R. Desiraju, T. Steiner, The Weak Hydrogen Bond in Structural Chemistry and Biology (Oxford Univ. Press, 1999)Google Scholar
  34. 34.
    S.F. Mason, R.D. Peacock, B. Stewart, Chem. Phys. Lett. 29, 149–153 (1974)CrossRefGoogle Scholar
  35. 35.
    S.F. Mason, R.D. Peacock, B. Stewart, Mol. Phys. 30, 1829–1841 (1975)CrossRefGoogle Scholar
  36. 36.
    T. Nakagawa, Y. Hasegawa, T. Kawai, J. Phys. Chem. A 112, 5096–5103 (2008)CrossRefGoogle Scholar
  37. 37.
    Y. Hasegawa, N. Sato, Y. Hirai, T. Nakanishi, Y. Kitagawa, A. Kobayashi, M. Kato, T. Seki, H. Ito, K. Fushimi, J. Phys. Chem. A 119, 4825–4833 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Hokkaido UniversitySapporo, HokkaidoJapan

Personalised recommendations