Advertisement

The Chaos Synchronization, Encryption for a Type of Three-Stage Communication System

  • Shuli Guo
  • Lina Han
Chapter

Abstract

In order to improve the transmission and safety performance of the single-stage chaotic system, such as chaotic masking, chaotic shift keying, and chaotic modulation, we present a new three-stage chaotic communication system. The chaotic systems in both the transmitter and the receiver end are consisted of the unified chaotic system, which has only one parameter need to be set. By adjusting the parameters in the linear system and the interference system, we can produce tens of different kinds of transmission signals, which make it more difficult for the illegal receiver to decode the encrypt signal. The simulation results show that the system will realize synchronization quickly, and the information signal can be recovered successfully under different parameters of the unified chaotic system.

Notes

Acknowledgements

This work is Supported by National Key Research and Development Program of China (2017YFF0207400).

References

  1. 1.
    Boccaletti S, Kurths J, Osipov G, Valladares DL, Zhou CS. The synchronization of chaotic systems. Phys Rep. 2002;302:777–88.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Henryk M. Characteristic time series and operation region of the system of two tank reactors (CSTR) with variable division of recirculation stream. Chaos Solitons Fractals. 2006;27:279–85.CrossRefGoogle Scholar
  3. 3.
    Henryk M. Chaotic dynamics of a cascade of plug flow tubular reactors (PFTRs) with division of recirculating stream. Chaos Solitons Fractals. 2005;23:1211–9.CrossRefGoogle Scholar
  4. 4.
    Tomasz S, Toshio O. A numerical analysis of chaos in the double pendulum. Chaos Solitons Fractals. 2006;29:417–22.CrossRefGoogle Scholar
  5. 5.
    Sunita G, Brahampal S. Complex dynamic behavior in a food web consisting of two preys and a predator. Chaos Solitons Fractals. 2005;24:789–801.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Zhang J, Li X, Chu Y, Yu J, Chang Y. Hopf bifurcations, lyapunov exponents and control of chaos for a class of centrifugal flywheel governor system. Chaos Solitons Fractals. 2009;39(5):2150–68.CrossRefGoogle Scholar
  7. 7.
    Chu YD, Zhang JG, Li XF, Chang YX, Luo GW. Chaos and chaos synchronization for a non-autonomous rotational machine systems. Nonlinear Anal (RWA). 2008;9:1378–93.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Qi G. Micha\(\ddot{e}\)l AW, Barend JW, Chen G. A chaotic secure communication scheme based on observer. Chaos Solitons Fractals. 2007;10:1–6.Google Scholar
  9. 9.
    Park JH. Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters. J Comput Appl Math. 2008;213:288–93.CrossRefGoogle Scholar
  10. 10.
    Yu Y. Adaptive synchronization of a unified chaotic system. Chaos Solitons Fractals. 2008;36:329–33.CrossRefGoogle Scholar
  11. 11.
    Wang H, Han ZZ, Zhang W, Xie QY. Synchronization of unified chaotic systems with uncertain parameters based on the CLF. Nonlinear Anal RWA. 2009;10:715–22.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev lett. 1990;64(8):821.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Pecora LM, Carroll TL. Driving systems with chaotic signals. Phys Rev A. 1991;44(4):2374.CrossRefGoogle Scholar
  14. 14.
    \(L\ddot{u}\) J, Chen G, Cheng D et al. Bridge the gap between the Lorenz system and the Chen system. Int J Bifurc Chaos 2002;12(12): 2917–2926.Google Scholar
  15. 15.
    Lorenz EN. Deterministic nonperiodic flow. J Atmos Sci. 1963;20(2):130–41.CrossRefGoogle Scholar
  16. 16.
    Chen G, Ueta T. Yet another chaotic attractor. Int J Bifurc Chaos. 1999;9(07):1465–6.MathSciNetCrossRefGoogle Scholar
  17. 17.
    \(L\ddot{u}\) J, Chen G. A new chaotic attractor coined. Int J Bifurc Chaos. 2002;12(03): 659–661.Google Scholar
  18. 18.
    Tao CH, Lu JA, Lu JH. The feedback synchronization of a unified chaotic system. Acta Phys Sin. 2002;51(7):1497–501.Google Scholar
  19. 19.
    Smaoui N, Karouma A, Zribi M. Secure communications based on the synchronization of the hyperchaotic Chen and the unified chaotic systems. Commun Nonlinear Sci Numer Simul. 2011;16(8):3279–93.MathSciNetCrossRefGoogle Scholar
  20. 20.
    Li XF, Leung ACS, Han XP, et al. Complete (anti-) synchronization of chaotic systems with fully uncertain parameters by adaptive control. Nonlinear Dyn. 2011;63(1–2):263–75.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wu X, Li Y, Zhang J. Synchronisation of unified chaotic systems with uncertain parameters in finite time. Int J Model Identif Control. 2012;17(4):295–301.CrossRefGoogle Scholar
  22. 22.
    Sheikhan M, Shahnazi R, Garoucy S. Synchronization of general chaotic systems using neural controllers with application to secure communication. Neural Comput Appl. 2013;22(2):361–73.CrossRefGoogle Scholar
  23. 23.
    Chee CY, Xu D. Secure digital communication using controlled projective synchronisation of chaos. Chaos Solitons Fractals. 2005;23(3):1063–70.CrossRefGoogle Scholar
  24. 24.
    Zhu F. Observer-based synchronization of uncertain chaotic system and its application to secure communications. Chaos Solitons Fractals. 2009;40(5):2384–91.CrossRefGoogle Scholar
  25. 25.
    Kolumban G, Kennedy MP, Chua LO. The role of synchronization in digital communications using chaos. I. Fundamentals of digital communications. IEEE Trans Circuits Syst I: Fundam Theory Appl. 1997;44(10):927–936.MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bai EW, Lonngren KE, Ucar A. Secure communication via multiple parameter modulation in a delayed chaotic system. Chaos Solitons Fractals. 2005;23(3):1071–6.CrossRefGoogle Scholar
  27. 27.
    Wang XY, Wang MJ. A chaotic secure communication scheme based on observer. Commun Nonlinear Sci Numer Simul. 2009;14(4):1502–8.CrossRefGoogle Scholar
  28. 28.
    Wu XJ, Wang H, Lu HT. Hyperchaotic secure communication via generalized function projective synchronization. Nonlinear Anal Real World Appl. 2011;12(2):1288–99.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Yang LX, Zhang J. Synchronization of three identical systems and its application for secure communication with noise perturbation. Int Conf Inf Eng Comput Sci ICIECS 2009. IEEE. 2009;2009:1–4.Google Scholar
  30. 30.
    Grzybowski JMV, Rafikov M, Balthazar JM. Synchronization of the unified chaotic system and application in secure communication. Commun Nonlinear Sci Numer Simul. 2009;14(6):2793–806.MathSciNetCrossRefGoogle Scholar
  31. 31.
    Chen S. \(L\ddot{u}\) J. Synchronization of an uncertain unified chaotic system via adaptive control. Chaos Solitons Fractals. 2002;14(4):643–7.CrossRefGoogle Scholar
  32. 32.
    Lu J, Wu X. \(L\ddot{u}\) J. Synchronization of a unified chaotic system and the application in secure communication. Phys Lett A. 2002;305(6):365–70.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Key Laboratory of Complex System Intelligent Control and Decision, School of AutomationBeijing Institute of TechnologyBeijingChina
  2. 2.Department of Cardiovascular Internal Medicine of Nanlou Branch, National Clinical Research Center for Geriatric DiseasesChinese PLA General HospitalBeijingChina

Personalised recommendations