An Efficient Privacy-Preserving Fingerprint-Based Localization Scheme Employing Oblivious Transfer

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 747)

Abstract

The tremendous growth of WiFi fingerprint-based localization techniques has significantly facilitated localization services. The traditional techniques pose a threat to both client’s and server’s privacies, because it is likely to reveal sensitive information about the client and the server during providing localization services. Many existing works have proposed privacy preserving localization schemes based on homomorphic cryptographic systems. However, the state of the art homomorphic cryptographic systems turn out to bear a time-consuming process for recourse-constrained devices. Hence, preserving location privacy while guaranteeing efficiency and usability is still a challenging problem. In this paper, we propose a privacy preserving indoor localization scheme employing oblivious transfer, called OTPri, to preserve the privacy of both clients and server in the process of localization in an efficient way. Our method enables a client to efficiently compute her location locally at client side with a small amount of additional overhead compared with the non-privacy-preserving scheme. Meanwhile, we conduct comprehensive experiments, including single-floor and multi-floor scenarios in our office building. The evaluation results demonstrate the efficiency improvement and overhead reduction of our proposed scheme compared with a classical privacy-preserving indoor localization scheme.

References

  1. 1.
    Azizyan, M., Constandache, I., Choudhury, R.R.: Surroundsense: mobile phone localization via ambience fingerprinting. In: Proceedings of the 15th Annual International Conference on Mobile Computing and Networking, pp. 261–272. ACM (2009)Google Scholar
  2. 2.
    Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking system. In: Proceedings of the Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM 2000), vol. 2, pp. 775–784. IEEE (2000)Google Scholar
  3. 3.
    Bahl, P., Padmanabhan, V.N., Balachandran, A.: Enhancements to the radar user location and tracking system. Microsoft Research, 2(MSR-TR-2000-12), pp. 775–784 (2000)Google Scholar
  4. 4.
    Beresford, A.R., Stajano, F.: Mix zones: user privacy in location-aware services. In: Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp. 127–131. IEEE (2004)Google Scholar
  5. 5.
    Chen, Y., Lymberopoulos, D., Liu, J., Priyantha, B.: FM-based indoor localization. In: Proceedings of the 10th International Conference on Mobile Systems, Applications, and Services, pp. 169–182. ACM (2012)Google Scholar
  6. 6.
    Chu, C.-K., Tzeng, W.-G.: Efficient k-out-of-n oblivious transfer schemes with adaptive and non-adaptive queries. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 172–183. Springer, Heidelberg (2005).  https://doi.org/10.1007/978-3-540-30580-4_12CrossRefGoogle Scholar
  7. 7.
    Du, X., Chen, H.H.: Security in wireless sensor networks. IEEE Wireless Commun. 15(4), 60–66 (2008)CrossRefGoogle Scholar
  8. 8.
    Du, X., Guizani, M., Xiao, Y., Chen, H.-H.: Secure and efficient time synchronization in heterogeneous sensor networks. IEEE Trans. Veh. Technol. 57(4), 2387–2394 (2008)CrossRefGoogle Scholar
  9. 9.
    Du, X., Xiao, Y., Chen, H.-H., Wu, Q.: Secure cell relay routing protocol for sensor networks. Wirel. Commun. Mob. Comput. 6(3), 375–391 (2006)CrossRefGoogle Scholar
  10. 10.
    Du, X., Xiao, Y., Guizani, M., Chen, H.-H.: An effective key management scheme for heterogeneous sensor networks. Ad Hoc Netw. 5(1), 24–34 (2007)CrossRefGoogle Scholar
  11. 11.
    Hei, X., Du, X., Wu, J., Hu, F.: Defending resource depletion attacks on implantable medical devices. In: Global Telecommunications Conference (GLOBECOM 2010), pp. 1–5. IEEE (2010)Google Scholar
  12. 12.
    Huang, W., Xiong, Y., Li, X.-Y., Lin, H., Mao, X., Yang, P., Liu, Y.: Shake and walk: acoustic direction finding and fine-grained indoor localization using smartphones. In: Proceedings of IEEE INFOCOM, pp. 370–378. IEEE (2014)Google Scholar
  13. 13.
    Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer, Heidelberg (2003).  https://doi.org/10.1007/978-3-540-45146-4_9CrossRefGoogle Scholar
  14. 14.
    LaMarca, A., et al.: Place lab: device positioning using radio beacons in the wild. In: Gellersen, H.-W., Want, R., Schmidt, A. (eds.) Pervasive 2005. LNCS, vol. 3468, pp. 116–133. Springer, Heidelberg (2005).  https://doi.org/10.1007/11428572_8CrossRefGoogle Scholar
  15. 15.
    Li, H., Sun, L., Zhu, H., Lu, X., Cheng, X.: Achieving privacy preservation in wifi fingerprint-based localization. In: Proceedings of IEEE INFOCOM, pp. 2337–2345. IEEE (2014)Google Scholar
  16. 16.
    Li, X.-Y., Jung, T.: Search me if you can: privacy-preserving location query service. In: Proceedings of IEEE INFOCOM, pp. 2760–2768. IEEE (2013)Google Scholar
  17. 17.
    Liu, X., Liu, K., Guo, L., Li, X., Fang, Y.: A game-theoretic approach for achieving k-anonymity in location based services. In: Proceedings of IEEE INFOCOM, pp. 2985–2993. IEEE (2013)Google Scholar
  18. 18.
    Ma, L., Teymorian, A.Y., Cheng, X.: A hybrid rogue access point protection framework for commodity wi-fi networks. In: The 27th Conference on Computer Communications (INFOCOM 2008), pp. 1220–1228. IEEE (2008)Google Scholar
  19. 19.
    Mohapatra, D., Suma, S.: Survey of location based wireless services. In: IEEE International Conference on Personal Wireless Communications (ICPWC 2005), pp. 358–362. IEEE (2005)Google Scholar
  20. 20.
    Ni, L.M., Liu, Y., Lau, Y.C., Patil, A.P.: LANDMARC: indoor location sensing using active RFID. Wirel. Netw. 10(6), 701–710 (2004)CrossRefGoogle Scholar
  21. 21.
    Otsason, V., Varshavsky, A., LaMarca, A., de Lara, E.: Accurate GSM indoor localization. In: Beigl, M., Intille, S., Rekimoto, J., Tokuda, H. (eds.) UbiComp 2005. LNCS, vol. 3660, pp. 141–158. Springer, Heidelberg (2005).  https://doi.org/10.1007/11551201_9CrossRefGoogle Scholar
  22. 22.
    Park, J.-G., Charrow, B., Curtis, D., Battat, J., Minkov, E., Hicks, J., Teller, S., Ledlie, J.: Growing an organic indoor location system. In: Proceedings of the 8th International Conference on Mobile Systems, Applications, and Services, pp. 271–284. ACM (2010)Google Scholar
  23. 23.
    Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, pp. 32–43. ACM (2000)Google Scholar
  24. 24.
    Priyantha, N.B., Miu, A.K., Balakrishnan, H., Teller, S.: The cricket compass for context-aware mobile applications. In: Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, pp. 1–14. ACM (2001)Google Scholar
  25. 25.
    Shokri, R., Theodorakopoulos, G., Le Boudec, J.-Y., Hubaux, J.-P.: Quantifying location privacy. In: IEEE Symposium on Security and Privacy (SP), pp. 247–262. IEEE (2011)Google Scholar
  26. 26.
    Shu, T., Chen, Y., Yang, J., Williams, A.: Multi-lateral privacy-preserving localization in pervasive environments. In: Proceedings of IEEE INFOCOM, pp. 2319–2327. IEEE (2014)Google Scholar
  27. 27.
    Vu, K., Zheng, R., Gao, J.: Efficient algorithms for k-anonymous location privacy in participatory sensing. In: Proceedings of IEEE INFOCOM, pp. 2399–2407. IEEE (2012)Google Scholar
  28. 28.
    Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM Trans. Inf. Syst. (TOIS) 10(1), 91–102 (1992)CrossRefGoogle Scholar
  29. 29.
    Xiao, Y., Du, X., Zhang, J., et al.: Internet Protocol Television (IPTV): the killer application for the next-generation Internet. IEEE Commun. Mag. 45(11), 126–134 (2007)CrossRefGoogle Scholar
  30. 30.
    Xiao, Y., Rayi, V.K., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key management schemes in wireless sensor networks. Comput. Commun. 30(11), 2314–2341 (2007)CrossRefGoogle Scholar
  31. 31.
    Yang, D., Fang, X., Xue, G.: Truthful incentive mechanisms for k-anonymity location privacy. In: Proceedings of IEEE INFOCOM, pp. 2994–3002. IEEE (2013)Google Scholar
  32. 32.
    Yao, X., Han, X., Du, X., Zhou, X.: A lightweight multicast authentication mechanism for small scale IoT applications. IEEE Sens. J. 13(10), 3693–3701 (2013)CrossRefGoogle Scholar
  33. 33.
    Youssef, M., Agrawala, A.: The Horus WLAN location determination system. In: Proceedings of the 3rd International Conference on Mobile Systems, Applications, and Services, pp. 205–218. ACM (2005)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mengxuan Sun
    • 1
  • Xiaoju Dong
    • 1
  • Fan Wu
    • 1
  • Guihai Chen
    • 1
  1. 1.Shanghai Key Laboratory of Scalable Computing and SystemsShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations