On Secrecy Performance of Multibeam Satellite System with Multiple Eavesdropped Users

  • Yeqiu Xiao
  • Jia Liu
  • Jiao Quan
  • Yulong Shen
  • Xiaohong Jiang
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 747)

Abstract

Satellite communication system is expected to play an important role in wireless networks because of its appealing contributions to ubiquitous coverage, content multicast and caching, reducing user expenditure, and so on. However, due to the inherent broadcasting nature and serious channel conditions, satellite communication system is highly vulnerable to eavesdropping attacks. As an initial step towards this end, this paper focuses on the physical layer security technique and explores the secrecy performance of a multibeam satellite system, where multiple legitimate users are served and each user is exposed to an eavesdropper located in the same beam. With perfect channel state information at the satellite and adopting the complete zero-forcing approach for signal processing, we first derive the optimal beamforming vectors to maximize the achievable secrecy rate. Based on this, we further calculate the secrecy outage probabilities of an individual user and the whole system, respectively. Finally, simulation and numerical results are provided to show the secrecy performance of the multibeam satellite system.

Keywords

Multibeam satellite system Physical layer security Beamforming Secrecy outage probability 

Notes

Acknowledgments

This work was supported in part by the Natural Science Foundation of China (NSFC) under Grant U1536202, Grant 61373173, and Grant 61571352; in part by the Project of Cyber Security Establishment with Inter-University Cooperation; and in part by the Secom Science and Technology Foundation.

References

  1. 1.
    Arapoglou, P.D., Liolis, K., Bertinelli, M., Panagopoulos, A., Cottis, P., De Gaudenzi, R.: MIMO over satellite: a review. IEEE Commun. Surv. Tutor. 13(1), 27–51 (2011)CrossRefGoogle Scholar
  2. 2.
    Zheng, G., Arapoglou, P.D., Ottersten, B.: Physical layer security in multibeam satellite systems. IEEE Trans. Wirel. Commun. 11(2), 852–863 (2012)CrossRefGoogle Scholar
  3. 3.
    Hong, Y.W.P., Lan, P.C., Kuo, C.C.J.: Enhancing physical-layer secrecy in multiantenna wireless systems: an overview of signal processing approaches. IEEE Signal Process. Mag. 30(5), 29–40 (2013)CrossRefGoogle Scholar
  4. 4.
    Schneier, B.: Cryptographic design vulnerabilities. Computer 31(9), 29–33 (1998)CrossRefGoogle Scholar
  5. 5.
    Shannon, C.E.: Communication theory of secrecy systems. Bell Labs Tech. J. 28(4), 656–715 (1949)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Wyner, A.D.: The wiretap channel. Bell Labs Tech. J. 54(8), 1355–1387 (1975)CrossRefMATHGoogle Scholar
  7. 7.
    Csiszár, I., Korner, J.: Broadcast channels with confidential messages. IEEE Trans. Inf. Theor. 24(3), 339–348 (1978)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Zou, Y., Zhu, J., Wang, X., Leung, V.C.: Improving physical-layer security in wireless communications using diversity techniques. IEEE Netw. 29(1), 42–48 (2015)CrossRefGoogle Scholar
  9. 9.
    Foschini, G.J., Gans, M.J.: On limits of wireless communications in a fading environment when using multiple antennas. Wirel. Pers. Commun. 6(3), 311–335 (1998)CrossRefGoogle Scholar
  10. 10.
    Barros, J., Rodrigues, M.R.: Secrecy capacity of wireless channels. In: 2006 IEEE International Symposium on Information Theory, pp. 356–360. IEEE (2006)Google Scholar
  11. 11.
    Koyluoglu, O.O., Koksal, C.E., El Gamal, H.: On secrecy capacity scaling in wireless networks. IEEE Trans. Inf. Theor. 58(5), 3000–3015 (2012)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Romero-Zurita, N., Ghogho, M., McLernon, D.: Outage probability based power distribution between data and artificial noise for physical layer security. IEEE Signal Process. Lett. 19(2), 71–74 (2012)CrossRefGoogle Scholar
  13. 13.
    Zou, Y., Zhu, J., Wang, G., Shao, H.: Secrecy outage probability analysis of multi-user multi-eavesdropper wireless systems. In: IEEE/CIC International Conference on Communications in China (ICCC), pp. 309–313. IEEE (2014)Google Scholar
  14. 14.
    An, K., Lin, M., Liang, T., Ouyang, J., Chen, H.: Average secrecy capacity of land mobile satellite wiretap channels. In: 8th International Conference on Wireless Communications & Signal Processing (WCSP), pp. 1–5. IEEE (2016)Google Scholar
  15. 15.
    An, K., Lin, M., Liang, T., Ouyang, J., Yuan, C., Lu, W.: Secrecy performance analysis of land mobile satellite communication systems over Shadowed-Rician fading channels. In: 25th Wireless and Optical Communication Conference (WOCC), pp. 1–4. IEEE (2016)Google Scholar
  16. 16.
    Yan, Y., Zhang, B., Guo, D., Li, S., Niu, H., Wang, X.: Joint beamforming and jamming design for secure cooperative hybrid satellite-terrestrial relay network. In: 25th Wireless and Optical Communication Conference (WOCC), pp. 1–5. IEEE (2016)Google Scholar
  17. 17.
    An, K., Lin, M., Liang, T., Ouyang, J., Yuan, C., Li, Y.: Secure transmission in multi-antenna hybrid satellite-terrestrial relay networks in the presence of eavesdropper. In: International Conference on Wireless Communications & Signal Processing (WCSP), pp. 1–5. IEEE (2015)Google Scholar
  18. 18.
    Lei, J., Han, Z., Vazquez-Castro, M.Á., Hjorungnes, A.: Secure satellite communication systems design with individual secrecy rate constraints. IEEE Trans. Inf. Forensics Secur. 6(3), 661–671 (2011)CrossRefGoogle Scholar
  19. 19.
    Yuan, C., Lin, M., Ouyang, J., Bu, Y.: Joint security beamforming in cognitive hybrid satellite-terrestrial networks. In: IEEE 83rd Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2016)Google Scholar
  20. 20.
    Friedlander, B., Porat, B.: Performance analysis of a null-steering algorithm based on direction-of-arrival estimation. IEEE Trans. Acoust. Speech Signal Process. 37(4), 461–466 (1989)CrossRefGoogle Scholar
  21. 21.
    Series, P.: Propagation data and prediction methods required for the design of earth-space telecommunication systems. Recommendation ITU-R, 618-12 (2015)Google Scholar
  22. 22.
    Zheng, G., Chatzinotas, S., Ottersten, B.: Generic optimization of linear precoding in multibeam satellite systems. IEEE Trans. Wirel. Commun. 11(6), 2308–2320 (2012)CrossRefGoogle Scholar
  23. 23.
    Díaz, M.A., Courville, N., Mosquera, C., Liva, G., Corazza, G.E.: Non-linear interference mitigation for broadband multimedia satellite systems. In: International Workshop on Satellite and Space Communications ( IWSSC 2007), pp. 61–65. IEEE (2007)Google Scholar
  24. 24.
    Liang, Y., Kramer, G., Poor, H.V., Shamai, S.: Compound wiretap channels. EURASIP J. Wirel. Commun. Netw. 2009, 5 (2009)CrossRefGoogle Scholar
  25. 25.
    Dong, L., Han, Z., Petropulu, A.P., Poor, H.V.: Improving wireless physical layer security via cooperating relays. IEEE Trans. Signal Process. 58(3), 1875–1888 (2010)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yeqiu Xiao
    • 1
  • Jia Liu
    • 2
  • Jiao Quan
    • 1
  • Yulong Shen
    • 1
  • Xiaohong Jiang
    • 3
  1. 1.School of Computer Science and TechnologyXidian UniversityXi’anChina
  2. 2.Center for Cybersecurity Research and DevelopmentNational Institute of InformaticsTokyoJapan
  3. 3.School of System Information ScienceFuture University HakodateHakodateJapan

Personalised recommendations