A Multi-agent Framework for Context-Aware Dynamic User Profiling for Web Personalization

  • Aarti Singh
  • Anu Sharma
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 731)


Growing volume of information on World Wide Web has made relevant information retrieval a difficult task. Customizing the information according to the user interest has become a need of the hour. Personalization aims to solve many associated problems in current Web. However, keeping an eye on user’s behavior manually is a difficult task. Moreover, user interests change with the passage of time. So, it is necessary to create a user profile accurately and dynamically for better personalization solutions. Further, the automation of various tasks in user profiling is highly desirable considering large size and high intensity of users involved. This work presents an agent-based framework for dynamic user profiling for personalized Web experience. Our contribution in this work is the development of a novel agent-based technique for maintaining long-term and short-term user interests along with context identification. A novel agent-based approach for dynamic user profiling for Web personalization has also been proposed. The proposed work is expected to provide an automated solution for dynamic user profile creation.


Context aware Dynamic Multi-agents User profiling Web personalization 


  1. 1.
    Singh, A.: Wisdom web: the WWW generation next. Int J. Advancements Technol. 3(3), 123–126 (2012)Google Scholar
  2. 2.
    Jammalamadaka, K., Srinivas, I.V.: A survey on ontology based web personalization. Int. J. Res. Eng. Technol. 2(10), 163–167 (2013)CrossRefGoogle Scholar
  3. 3.
    Singh, A.: Agent based framework for semantic web content mining. Int. J. Advancements Technol. 3(2), 108–113 (2012)Google Scholar
  4. 4.
    Singh, A., Mishra, R.: Exploring web usage mining with scope of agent technology. Int. J. Eng. Sci. Technol. 4(10), 4283–4289 (2012)Google Scholar
  5. 5.
    Carmagnola, F., Cena, F., Gena, C.: User model interoperability: a survey. User Model. User-Adap. Inter. 21(3), 285–331 (2011)CrossRefGoogle Scholar
  6. 6.
    Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography. ACM SIGIR Forum 37(2), 18–28 (2003)CrossRefGoogle Scholar
  7. 7.
    Chen, L., Sycara, K.: WebMate: a personal agent for browsing and searching. In: Proceedings of the 2nd International Conference on Autonomous Agents, Minneapolis/St. Paul, 9–13 May, pp. 132–139. ACM Press, New York (1998)Google Scholar
  8. 8.
    Moukas, A.: Amalthaea: information discovery and filtering using a multiagent evolving ecosystem. Appl. Artif. Intel. 11(5), 437–457 (1997)CrossRefGoogle Scholar
  9. 9.
    Minio, M., Tasso, C.: User modeling for information filtering on INTERNET services: exploiting an extended version of the UMT shell. In: UM96 Workshop on User Modeling for Information Filtering on the WWW; Kailua-Kona, Hawaii, 2–5 Jan 1996Google Scholar
  10. 10.
    Bloedorn, E., Mani, I., MacMillan, T.R.: Machine learning of user profiles: representational issues. In: Proceedings of AAAI 96 from Portland, 4–8 Aug, Oregon, vol. 1, pp. 433–438 (1996)Google Scholar
  11. 11.
    Gauch, S., Speretta, M., Chandramouli, A., Micarelli, A.: User profiles for personalized information access. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS 4321, pp. 54–89. Springer, Berlin, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Singh, A., Anand, P.: Automatic domain ontology construction mechanism. In: Proceedings of IEEE International Conference on Recent Advances in Intelligent Computing Systems (RAICS) from 19–21 Dec, pp. 304–309. IEEE Press, Trivandrum, Kerala, India (2013)Google Scholar
  13. 13.
    Bhowmick, P.K., Sarkar, S., Basu, A.: Ontology based user modeling for personalized information access. Int. J. Comput. Sci. Appl. 7(1), 1–22 (2010)Google Scholar
  14. 14.
    Middleton, S.E., Shadbolt, N.R., Roure, D.C.D.: Ontological user profiling in recommender systems. ACM Trans. Inf. Syst. 22(1), 54–88 (2004)CrossRefGoogle Scholar
  15. 15.
    Sosnovsky, S., Dicheva, D.: Ontological technologies for user modelling. Int. J. Metadata Semant. Ontol. 5(1), 32–71 (2010)CrossRefGoogle Scholar
  16. 16.
    Razmerita, L., Angehrn, A., Maedche, A.: Ontology based user modeling for knowledge management systems. In: Brusilovsky, P., Corbett, A., Rosis, F.D. (eds.) User Modeling 2003. LNCS, vol. 2702, pp. 213–217. Springer, Berlin, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Trajkova, J., Gauch, S.: Improving ontology-based user profiles. In: Proceedings of RIAO 2004 on 26–28 Apr, pp. 380–389, France (2004)Google Scholar
  18. 18.
    Hawalah, A., Fasli, M.: A multi-agent system using ontological user profiles for dynamic user modelling, In: Proceedings of International Conferences on Web Intelligence and Intelligent Agent Technology, pp. 430–437, IEEE Press, Washington (2011)Google Scholar
  19. 19.
    Aghabozorgi, S.R., Wah, T.Y.: Dynamic modeling by usage data for personalization systems, In: Proceedings of 13th International Conference on Information Visualization, pp. 450–455. IEEE Press, Barcelona (2009)Google Scholar
  20. 20.
    Skillen, K.L., Chen, L., Nugent, C.D., Donnelly, M.P., Burns, W., Solheim, I.: Ontological user profile modeling for context-aware application personalization. In: Bravo, J., López-de-Ipiña, D., Moya, F. (eds.) Ubiquitous Computing and Ambient Intelligence. LNCS, vol. 7656, pp. 261–268. Springer, Berlin, Heidelberg (2012)CrossRefGoogle Scholar
  21. 21.
    Vigneshwari, S., Aramudhan, M.: A novel approach for personalizing the web using user profiling ontologies. In: IEEE Fourth International Conference on Advanced Computing ICoAC, pp. 1–4. IEEE Press, Chennai (2012)Google Scholar
  22. 22.
    Li, L., Yang, Z., Wang, B., Kitsuregawa, M.: Dynamic adaptation strategies for long-term and short-term user profile to personalize search. In: Dong, G., Lin, X., Wang, W., Yang, Y., Yu, J.X. (eds.) Advances in Data and Web Management. LNCS, vol. 4505, pp. 228–240. Springer Berlin, Heidelberg (2007)Google Scholar
  23. 23.
    Woerndl, W., Groh, G.: A proposal for an agent-based architecture for context-aware personalization in the semantic web. In: Proceeding of IJCAI Workshop Multi-agent information retrieval and recommender systems, Edinburg, UK-IJCAI (2005)Google Scholar
  24. 24.
    Hijikata, Y.: Estimating a user’s degree of interest in a page during web browsing. In: Proceedings of IEEE SMC ‘99 Conference, vol. 4, pp. 105–110. IEEE Press, Tokyo (1999)Google Scholar
  25. 25.
    Moawad, I.F., Talha, H., Hosny, E., Hashim, M.: Agent-based web search personalization approach using dynamic user profile. Egypt. Inf. J. 13, 191–198 (2012)CrossRefGoogle Scholar
  26. 26.
    Sieg, A., Mobasher, B., Burke, R.: Learning ontology-based user profiles: a semantic approach to personalized web search. IEEE Intel. Inf. Bull. 8(1), 7–18 (2007)Google Scholar
  27. 27.
    Singh, A., Alhadidi, B.: Knowledge oriented personalized search engine: a step towards wisdom web. Int. J. Comput. Appl. 76(8), 1–9 (2013)Google Scholar
  28. 28.
    Singh, A., Sharma, A., Dey, N.: Semantics and agents oriented web personalization: state of the art. Int. J. Serv. Sci. Manag. Eng. Technol. 6(2), 35–49 (2015)Google Scholar
  29. 29.
    Yahoo Personalized Portal.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.MMICT&BMMMUAmbalaIndia

Personalised recommendations