Skip to main content

Comparisons Among Thyristor Controlled LC-Coupling Hybrid Active Power Filter (TCLC-HAPF) and Other Different Power Quality Filters

  • Chapter
  • First Online:
  • 743 Accesses

Part of the book series: Power Systems ((POWSYS))

Abstract

The design of shunt active power filters (APF) and hybrid active power filters (HAPFs) characterized by better performance, high reliability, low cost and failure rates will be the major trend in the future. Over the past few decades, significant researches were focused on addressing the technical challenges associated with the parameter design, operation and control of the APF and different HAPFs. However, the comprehensive review of their V-I characteristics, cost, reliability, power loss and tracking performance has been rarely studied. Therefore, this chapter aims to provide a clear picture of the selection of APF and different HAPFs based on V-I characteristic, cost, reliability, power loss and tracking performance. The supreme one will be selected among APF and different HAPFs by considering the V-I characteristics, cost, reliability, power loss, and tracking performance. Finally, the experimental results of APF and different HAPFs will be provided to verify their compensation performances.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.C. Das, Passive filters—potentialities and limitations. IEEE Trans. Ind. Appl. 40(1), 232–241 (2004)

    Article  Google Scholar 

  2. R.N. Beres, X. Wang, M. Liserre, F. Blaabjerg, C.L. Bak, A review of passive power filters for three-phase grid connected voltage source converters. IEEE J. Emerg. Sel. Topics Power Electron. 4(1), 54–69 (2016)

    Article  Google Scholar 

  3. L. Wang, C.S. Lam, M.C. Wong, Design of a thyristor controlled LC compensator for dynamic reactive power compensation in smart grid. IEEE Trans. Smart Grid. 8(1), 409–417 (2017)

    Google Scholar 

  4. S.D. Swain, P.K. Ray, K.B. Mohanty, Improvement of power quality using a robust hybrid series active power filter. IEEE Trans. Power Electron. 32(5), 3490–3498 (2017)

    Article  Google Scholar 

  5. J. Chen, X. Zhang, C. Wen, Harmonics attenuation and power factor correction of a more electric aircraft power grid using active power filter. Trans. Ind. Electron. 63(12), 7310–7319 (2016)

    Article  Google Scholar 

  6. J. Fang, G. Xiao, X. Yang, Y. Tang, Parameter design of a novel series-parallel-resonant LCL filter for single-phase half-bridge active power filters. IEEE Trans. Power Electron. 32(1), 200–217 (2017)

    Article  Google Scholar 

  7. L. Wang, C.S. Lam, M.C. Wong et al., Non-linear adaptive hysteresis band pulse-width modulation control for hybrid active power filters to reduce switching loss. IET Power Electron. 8(11), 2156–2167 (2015)

    Article  Google Scholar 

  8. İ. Yılmaz, E. Durna, M. Ermiş, Design and implementation of a hybrid system for the mitigation of pq problems of medium-frequency induction steel-melting furnaces. Trans. Ind. Appl. 52(3), 2700–2713 (2016)

    Article  Google Scholar 

  9. K.W. Lao, M.C. Wong et al., Analysis in the effect of co-phase traction railway HPQC coupled impedance on its compensation capability and impedance-mapping design technique based on required compensation capability for reduction in operation voltage. IEEE Trans. Power Electron. 32(4), 2631–2646 (2017)

    Article  Google Scholar 

  10. L. Wang, C.S. Lam, M.C. Wong, A SVC-HAPF with wide compensation range and low dc-link voltage. IEEE Trans. Ind. Electron. 63(6), 3333–3343 (2016)

    Article  Google Scholar 

  11. S. Rahmani, A. Hamadi, K. Al-Haddad, A combination of shunt hybrid power filter and thyristor-controlled reactor for power quality. IEEE Trans. Ind. Electron. 61(5), 2152–2164 (2014)

    Article  Google Scholar 

  12. L. Wang, C.S. Lam, M.C. Wong, An unbalanced control strategy for a thyristor controlled LC-coupling hybrid active power filter (SVC-HAPF) in three-phase three-wire systems. IEEE Trans. Power Electron. 32(2), 1056–1069 (2017)

    Article  Google Scholar 

  13. L. Wang, C.S. Lam, M.C. Wong, Hardware and software design of a low dc-link voltage and wide compensation range thyristor controlled LC-coupling hybrid active power filter, in TENCON 2015 IEEE Region 10 Conference proceedings, Nov 2015

    Google Scholar 

  14. L. Wang, C.S. Lam, M.C. Wong, Modeling and parameter design of thyristor controlled LC-coupled hybrid active power filter (SVC-HAPF) for unbalanced compensation. IEEE Trans. Ind. Electron. 64(3), 1827–1840 (2017)

    Article  Google Scholar 

  15. C.S. Lam, L. Wang, S.I. Ho, M.C. Wong, Adaptive thyristor controlled LC—hybrid active power filter for reactive power and current harmonics compensation with switching loss reduction. IEEE Trans. Power Electron. 32(10), 7577–7590 (2017)

    Article  Google Scholar 

  16. L. Wang, C.S. Lam, M.C. Wong, Selective compensation of distortion, unbalanced and reactive power of a thyristor controlled LC-coupling hybrid active power filter (SVC-HAPF). IEEE Trans. Power Electron. 32(12), 9065–9077 (2017)

    Article  Google Scholar 

  17. C.S. Lam, X.X. Cui, W.H. Choi, M.C. Wong, Y.D. Han, Minimum inverter capacity design for three-phase four-wire LC-hybrid active power filters. IET, Power Electron. 5(7), 956–968 (2012)

    Article  Google Scholar 

  18. C.-S. Lam, W.-H. Choi, M.-C. Wong, Y.-D. Han, Adaptive dc-link voltage controlled hybrid active power filters for reactive power compensation. IEEE Trans. Power Electron. 27(4), 1758–1772 (2012)

    Article  Google Scholar 

  19. C.S. Lam, M.C. Wong, W.-H. Choi, X.-X. Cui, H.-M. Mei, J.-Z. Liu, Design and performance of an adaptive low-dc-voltage-controlled LC-Hybrid active power filter with a neutral inductor in three-phase four-wire power systems. IEEE Trans. Power Electron. 61(6), 2635–2647 (2014)

    Google Scholar 

  20. L.K. Haw, M.S. Dahidah, H.A.F. Almurib, A new reactive current reference algorithm for the STATCOM system based on cascaded multilevel inverters. IEEE Trans. Power Electron. 30(7), 3577–3588 (2015)

    Article  Google Scholar 

  21. J.A. Munoz, J.R. Espinoza, C.R. Baier, L.A. Moran, J.I. Guzman, V.M. Cardenas, Decoupled and modular harmonic compensation for multilevel STATCOMs. IEEE Trans. Ind. Electron. 61(6), 2743–2753 (2014)

    Article  Google Scholar 

  22. V. Soares, P. Verdelho, An instantaneous active and reactive current component method for active filters. IEEE Trans. Power Electron. 15(4), 660–669 (2000)

    Article  Google Scholar 

  23. T.L. Lee, S.H. Hu, Y.H. Chan, D-STATCOM with positive-sequence admittance and negative-sequence conductance to mitigate voltage fluctuations in high-level penetration of distributed-generation systems. IEEE Trans. Ind. Electron. 60(4), 1417–1428 (2013)

    Article  Google Scholar 

  24. M. Hagiwara, R. Maeda, H. Akagi, Negative-sequence reactive-power control by a PWM STATCOM based on a modular multilevel cascade converter (MMCC-SDBC). IEEE Trans. Ind. Appl. 48(2), 720–729 (2012)

    Article  Google Scholar 

  25. IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, 2014, IEEE Standard 519-2014

    Google Scholar 

  26. Galco Industrial Electronics, Component price list (Sept 2015) [Online]. Available: www.galco.com

  27. C. Kawann, A.E. Emanuel, Passive shunt harmonic filters for low and medium voltage: a cost comparison study. IEEE Trans. Power Syst. 11(4), 1825–1831 (1996)

    Article  Google Scholar 

  28. K. Habur, D. O’Leary, FACTS—For cost effective and reliable transmission of electrical energy [Online]. Available: http://www.worldbank.org/html/fpd/em/transmission/facts_siemens.pdf

  29. L.M. Tolbert, T.J. King et al., Power electronics for distributed energy systems and transmission and distribution applications: assessing the technical needs for utility applications. ORNL/TM-2005/230, Oak Ridge Nat. Lab., Dec 2005

    Google Scholar 

  30. F. Richardeau, T.T.L. Pham, Reliability calculation of multilevel converters: theory and applications. IEEE Trans. Ind. Electron. 60(10), 4225–4233 (2013)

    Article  Google Scholar 

  31. X. Yu, A.M. Khambadkone, Reliability analysis and cost optimization of parallel-inverter system. IEEE Trans. Ind. Electron. 59(10), 3881–3889 (2012)

    Article  Google Scholar 

  32. B. Abdi, A.H. Ranjbar, G.B. Gharehpetian, J. Milimonfared, Reliability considerations for parallel performance of semiconductor switches in high-power switching power supplies. IEEE Trans. Ind. Electron. 56(6), 2133–2139 (2009)

    Article  Google Scholar 

  33. Reliability Prediction of Electronic Equipments (MIL-HDBK-217), Relex Software Corporation, Greensburg, PA, 1990

    Google Scholar 

  34. M.-C. Wong, J. Tang, Y.-D. Han, Cylindrical coordinate control of three-dimensional PWM technique in three-phase four-wired trilevel inverter. IEEE Trans. Power Electron. 18(1), 208–220 (2003)

    Article  Google Scholar 

  35. E. Baussan, E. Bouquerel, M. Dracos et al., Study of the pulse power supply unit for the four-horn system of the CERN to Frejus neutrino super beam. J. Instrum. T07006 (Aug 2013)

    Google Scholar 

  36. Infineon Technologies AG: http://www.infineon.com/. Datasheet: T1901N (2011). [Online]. Available: http://www.infineon.com/eupec

  37. Infineon Technologies AG: http://www.infineon.com/. Datasheet: FZ1000R33HL3 (2013). [Online]. Available: http://www.infineon.com/eupec

  38. Z. Dang, J.A.A. Qahouq, Evaluation of high-current toroid power inductor with NdFeB magnet for DC–DC power converters. IEEE Trans. Ind. Electron. 62(11), 6868–6876 (2015)

    Article  Google Scholar 

  39. A. Braham, A. Lahyani, P. Venet, N. Rejeb, Recent developments in fault detection and power loss estimation of electrolytic capacitors. IEEE Trans. Power Electron. 25(1), 33–43 (2010)

    Article  Google Scholar 

  40. X.S. Pu, T.H. Nguyen, D.C. Lee, K.B. Lee, J.M. Kim, Fault diagnosis of DC-link capacitors in three-phase AC/DC PWM converters by online estimation of equivalent series resistance. IEEE Trans. Ind. Electron. 60(9), 4118–4127 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., Wong, MC., Lam, CS. (2019). Comparisons Among Thyristor Controlled LC-Coupling Hybrid Active Power Filter (TCLC-HAPF) and Other Different Power Quality Filters. In: Adaptive Hybrid Active Power Filters. Power Systems. Springer, Singapore. https://doi.org/10.1007/978-981-10-8827-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8827-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8826-1

  • Online ISBN: 978-981-10-8827-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics