Skip to main content

A Review of Description Logic-Based Techniques for Robot Task Planning

  • Chapter
  • First Online:
Integrated Intelligent Computing, Communication and Security

Part of the book series: Studies in Computational Intelligence ((SCI,volume 771))

  • 898 Accesses

Abstract

Planning and scheduling problems have become a promising area of research in the field of artificial intelligence (AI). In order to provide collision avoidance and enable successful completion of the task, the robot requires sophisticated knowledge about the environment for processing the tasks or methods. Knowledge representation and reasoning (KR & R) techniques provide such a level of knowledge to perceive the task environment. These techniques include description logic (DL) and ontology-based approaches. DL provides low-level knowledge to describe an environment. With advances in KR using ontology, high-level knowledge domain descriptions can be obtained more effectively. Knowledge representation techniques aid in temporal, ontological and spatial reasoning in a modeled environment. In this chapter, low-level KR & R techniques for task planning are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alatartsev, Sergey, Sebastian Stellmacher, and Frank Ortmeier. 2015. Robotic task sequencing problem: a survey. Journal of intelligent & robotic systems 80 (2): 279.

    Article  Google Scholar 

  2. Baader, Franz. 2003. The description logic handbook: theory, implementation and applications. Cambridge: Cambridge university press.

    Google Scholar 

  3. Beetz, Michael, Moritz Tenorth, and Jan Winkler. Open-ease. 2015. In 2015 IEEE international conference on robotics and automation (ICRA),1983–1990. New York: IEEE.

    Google Scholar 

  4. Cho, Joonmyun , Hyun Kim, and Joochan Sohn. 2010. Implementing automated robot task planning and execution based on description logic kb. Simulation, modeling, and programming for autonomous robots, 217–228.

    Chapter  Google Scholar 

  5. He, Keliang, Morteza Lahijanian, Lydia E Kavraki, and Moshe Y Vardi. Towards manipulation planning with temporal logic specifications. 2015. In 2015 IEEE international conference on robotics and automation (ICRA), 346–352. New York: IEEE.

    Google Scholar 

  6. Kress-Gazit, H, Georgios E Fainekos, and George J Pappas. 2005. Temporal logic motion planning for mobile robots. IEEE transactions on robotics 21(5):2020–2025.

    Google Scholar 

  7. Manjunath, T.C., and C. Ardil. 2008. Design of an artificial intelligence based automatic task planner or a robotic system. International journal of computer and information science and engineering 2: 1–6.

    Google Scholar 

  8. Milicic, Maja. 2008. Action, time and space in description logics.

    Google Scholar 

  9. Plaku, Erion, and Sertac Karaman. 2016. Motion planning with temporal-logic specifications: progress and challenges. AI communications 29 (1): 151–162.

    Article  MathSciNet  Google Scholar 

  10. Srivastava, Siddharth, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter Abbeel. 2014. Combined task and motion planning through an extensible planner-independent interface layer. In 2014 IEEE international conference on robotics and automation (ICRA), 639–646. New York: IEEE.

    Google Scholar 

  11. Stenmark, Maj, and Jacek Malec. 2015. Knowledge-based instruction of manipulation tasks for industrial robotics. Robotics and computer-integrated manufacturing 33: 56–67.

    Article  Google Scholar 

  12. Tenorth, Moritz, and Michael Beetz. 2017. Representations for robot knowledge in the knowrob framework. Artificial intelligence 247: 151–169.

    Article  MathSciNet  Google Scholar 

  13. Tenorth, Moritz, Alexander Clifford Perzylo, Reinhard Lafrenz, and Michael Beetz. 2013. Representation and exchange of knowledge about actions, objects, and environments in the roboearth framework. IEEE transactions on automation science and engineering, 10 (3): 643–651.

    Google Scholar 

  14. Wu, Xiuguo, Guangzhou Zeng, Fangxi Han, and Rui Wang. 2007. Goal representation and reasoning based on description logics (dls). In International conference on intelligent systems and knowledge engineering, ISKE.

    Google Scholar 

  15. Zhang, Shiqi, Mohan Sridharan, Michael Gelfond, and Jeremy Wyatt. 2014. Towards an architecture for knowledge representation and reasoning in robotics. In International conference on social robotics, 400–410. Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gayathri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gayathri, R., Uma, V. (2019). A Review of Description Logic-Based Techniques for Robot Task Planning. In: Krishna, A., Srikantaiah, K., Naveena, C. (eds) Integrated Intelligent Computing, Communication and Security. Studies in Computational Intelligence, vol 771. Springer, Singapore. https://doi.org/10.1007/978-981-10-8797-4_11

Download citation

Publish with us

Policies and ethics