Skip to main content

A Piezoelectric Actuator Based Compact Micro-manipulation System for Robotic Assembly

  • Conference paper
  • First Online:
Precision Product-Process Design and Optimization

Abstract

In this chapter, a novel design of miniature wireless mobile micro-manipulation system (WMMS) for robotic assembly is proposed where a three-piezoelectric actuator fingers’ based compact gripper is developed for handling the small objects. The piezoelectric actuator has the potential of generating displacement in micron range and produces high force after applying voltage for miniature objects. In order to perform pick-and-place operation of the object from one to another position in desired workspace, the kinematics for WMMS is carried out and throughput analysis is performed using ADMAS software. The simulations are obtained and verified by developing a physical prototype. It is also demonstrated that the compact WMMS shows handiness during handling and manipulation of lightweight objects without destructing it in a robust manner during robotic assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agnus, J., P. Nectoux, and N. Chaillet. 2005. Overview of microgrippers and design of a micromanipulation station based on a MMOC microgripper. In Proceedings of International Symposium on Computational Intelligence in Robotics and Automation, 117–123.

    Google Scholar 

  • Amari, N., D. Folio, and A. Ferreira. 2014. Motion of a micro/nanomanipulator using a laser beam tracking system. International Journal of Optomechatronics 8 (1): 30–46.

    Article  Google Scholar 

  • Bhandari, B., G.Y. Lee, and S.H. Ahn. 2012. A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. International Journal of Precision Engineering and Manufacturing 13 (1): 141–163.

    Article  Google Scholar 

  • Bolopion, A., and S. Régnier. 2013. A review of haptic feedback teleoperation systems for micromanipulation and microassembly. IEEE Transactions on Automation Science and Engineering 10 (3): 496–502.

    Article  Google Scholar 

  • Boudaoud, M., and S. Regnier. 2014. An overview on gripping force measurement at the micro and nano-scales using two-fingered microrobotic systems. International Journal of Advanced Robotic Systems 11: 45.

    Article  Google Scholar 

  • Chen, T., M. Pan, Y. Wang, J. Liu, L. Chen, and L. Sun. 2012. Manipulation of micro objects based on dynamic adhesion control. International Journal of Advanced Robotic Systems 9: 89.

    Article  Google Scholar 

  • Clévy, C., and N. Chaillet. 2006. Micromanipulation and micro-assembly systems. In Proceedings of International Advanced Robotics Programm, IARP’06, Paris, France, sur-CD.

    Google Scholar 

  • Dadfarnia, M., N. Jalili, B. Xian, and D.M. Dawson. 2004. A Lyapunov-based piezoelectric controller for flexible Cartesian robot manipulators. Journal of Dynamic Systems, Measurement, and Control 126 (2): 347–358.

    Article  Google Scholar 

  • Deole, U., R. Lumia, M. Shahinpoor, and M. Bermudez. 2008. Design and test of IPMC artificial muscle microgripper. Journal of Micro-Nano Mechatronics 4 (3): 95–102.

    Article  Google Scholar 

  • Fuchiwaki, O., A. Ito, D. Misaki, and H. Aoyama. 2008. Multi-axial micromanipulation organized by versatile micro robots and micro tweezers. In Proceedings of IEEE International Conference on Robotics and Automation, 893–898.

    Google Scholar 

  • Gao, P., and S.M. Swei. 1999. A six-degree-of-freedom micro-manipulator based on piezoelectric translators. Nanotechnology 10 (4): 447.

    Article  Google Scholar 

  • Hall, D.A. 2001. Review nonlinearity in piezoelectric ceramics. Journal of Materials Science 36 (19): 4575–4601.

    Article  Google Scholar 

  • Hristov, K., F. Ionescu, and K. Kostadinov. 2002. Modeling, procedure and development of piezo actuated mechatronic systems. Journal of Problems of Engineering Cybernetics and Robotics 53: 76–79.

    Google Scholar 

  • Huang, S.J., and J.P. Tsai. 2005. Robotic automatic assembly system for random operating condition. International Journal of Advanced Manufacturing Technology 27 (3–4): 334–344.

    Article  Google Scholar 

  • Jain, R.K., U.S. Patkar, and S. Majumder. 2009. Micro gripper for micromanipulation using IPMCs (ionic polymer metal composites). Journal of Scientific & Industrial Research 68 (1): 23–29.

    Google Scholar 

  • Jain, R.K., S. Datta, S. Majumder, and A. Dutta. 2011. Two IPMC fingers based micro gripper for handling. International Journal of Advanced Robotics Systems 8 (1): 1–9.

    Article  Google Scholar 

  • Jain, R.K., S. Majumder, and A. Dutta. 2013a. SCARA based peg-in-hole assembly using compliant IPMC based micro gripper. Robotics Autonomous Systems 61 (3): 297–311.

    Article  Google Scholar 

  • Jain, R.K., S. Saha, and S. Majumder. 2013b. Development of piezoelectric actuator based compliant micro gripper for robotic peg-in-hole assembly. In IEEE International Conference on Robotics and Biomimetics (ROBIO-2013), 1562–1567.

    Google Scholar 

  • Jain, R.K., S. Majumder, B. Ghosh, and S. Saha. 2015a. Development of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper. Journal of Manufacturing Systems 35: 76–91.

    Article  Google Scholar 

  • Jain, R.K., S. Majumder, and B. Ghosh. 2015b. Design and analysis of piezoelectric actuator for micro gripper. International Journal of Mechanics and Materials in Design 11: 253–276.

    Article  Google Scholar 

  • Kohl, M., B. Krevet, and E. Just. 2002. SMA microgripper system. Sensors and Actuators A: Physical 97: 646–652.

    Article  Google Scholar 

  • Li, Y., Z. Wu, and X. Zhao. 2013. Optimal design and control strategy of a novel 2-DOF micromanipulator. International Journal of Advanced Robotic Systems 10: 162.

    Article  Google Scholar 

  • Lin, C.M., C.H. Fan, and C.C. Lan. 2009. A shape memory alloy actuated microgripper with wide handling ranges. In Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 12–17.

    Google Scholar 

  • Liu, T.J., and Q.Y. Liu. 2010. The design of micromanipulator based on piezo actuator. Key Engineering Materials 426: 529–531.

    Article  Google Scholar 

  • Mok, S.M., C.H. Wu, and D.T. Lee. 2000. A system for analyzing automatic assembly and disassembly operations. In Proceedings of IEEE International Conference on Robotics and Automation, ICRA’00, vol. 4, 3695–3700.

    Google Scholar 

  • Oriolo, G., and C. Mongillo. 2005. Motion planning for mobile manipulators along given end-effector paths. In IEEE International Conference on Robotics and Automation, 2154–2160.

    Google Scholar 

  • Pérez, R., N. Chaillet, K. Domanski, P. Janus, and P. Grabiec. 2006. Fabrication, modeling and integration of a silicon technology force sensor in a piezoelectric micro-manipulator. Sensors and Actuators A: Physical 128 (2): 367–375.

    Article  Google Scholar 

  • Popa, D.O., B.H. Kang, J.T. Wen, H.E. Stephanou, G. Skidmore, and A. Geisberger. 2003. Dynamic modeling and input shaping of thermal bimorph MEMS actuators. In Proceedings of IEEE International Conference on Robotics and Automation-2003 (ICRA’03), vol. 1, 1470–1475.

    Google Scholar 

  • Probst, M., C. Hürzeler, R. Borer, and B.J. Nelson. 2009. A micro assembly system for the flexible assembly of hybrid robotic MEMS devices. International Journal of Optomechatronics 3 (2): 69–90.

    Article  Google Scholar 

  • Rakotondrabe, M., and I.A. Ivan. 2011. Development and force/position control of a new hybrid thermo-piezoelectric micro gripper dedicated to micromanipulation tasks. IEEE Transactions on Automation Science and Engineering 8 (4): 824–834.

    Article  Google Scholar 

  • Sitti, M., D. Campolo, J. Yan, and R.S. Fearing. 2001. Development of PZT and PZN-PT based unimorph actuators for micromechanical flapping mechanisms. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 4, 3839–3846.

    Google Scholar 

  • Sun, L., C. Ru, and W. Rong. 2004. Hysteresis compensation for piezoelectric actuator based on adaptive inverse control. In Fifth World Congress on Intelligent Control and Automation (WCICA 2004), vol. 6, 5036–5039.

    Google Scholar 

  • Song, G., J. Zhao, X. Zhou, and J.A. De Abreu-García. 2005. Tracking control of a piezoceramic actuator with hysteresis compensation using inverse Preisach model. IEEE/ASME Transactions on Mechatronics 10 (2): 198–209.

    Article  Google Scholar 

  • Tamadazte, B., N.L.F. Piat, and S. Dembélé. 2011. Robotic micromanipulation and microassembly using monoview and multiscale visual servoing. IEEE/ASME Transactions on Mechatronics 16 (2): 277–287.

    Article  Google Scholar 

  • Valdastri, P., P. Corradi, A. Menciassi, T. Schmickl, K. Crailsheim, J. Seyfried, and P. Dario. 2006. Micromanipulation, communication and swarm intelligence issues in a swarm microrobotic platform. Robotics and Autonomous Systems 54 (10): 789–804.

    Article  Google Scholar 

  • Xiao, S., and Y. Li. 2014. Dynamic compensation and H∞ control for piezoelectric actuators based on the inverse Bouc-Wen model. Robotics and Computer-Integrated Manufacturing 30 (1): 47–54.

    Article  MathSciNet  Google Scholar 

  • Yang, S., R.A. MacLachlan, and C.N. Riviere. 2012. Design and analysis of 6 DOF handheld micromanipulator. In IEEE International Conference on Robotics and Automation (ICRA), 1946–1951.

    Google Scholar 

  • Zaeh, M.F., D. Jacob, M. Ehrenstrasser, and J. Schilp. 2003. Hybrid micro-assembly system for teleoperated and automated micromanipulation. Ziegert, JC: Machines and Processes for Micro-scale and Meso-scale Fabrication, Metrology and Assembly, Florida. North Carolina: Proceedings of ASPE 28: 119–124.

    Google Scholar 

  • Zhang, Y.L., M.L. Han, M.Y. Yu, C.Y. Shee, and W.T. Ang. 2012. Automatic hysteresis modeling of piezoelectric micromanipulator in vision-guided micromanipulation systems. IEEE/ASME Transactions on Mechatronics 17 (3): 547–553.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-CMERI, Durgapur, West Bengal, India for granting the permission to publish this paper. This work is the part of entitled project “Development of piezo actuator based micro manipulation system” under SINP on “Intelligent Devices and Smart Actuator” (Project No. ESC-203/10) for 12th 5-year plan which is financially supported by Council of Scientific Industrial Research (CSIR), Govt. of India, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jain, R.K., Saha, S., Ghosh, B. (2018). A Piezoelectric Actuator Based Compact Micro-manipulation System for Robotic Assembly. In: Pande, S., Dixit, U. (eds) Precision Product-Process Design and Optimization. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-8767-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8767-7_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8766-0

  • Online ISBN: 978-981-10-8767-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics