Skip to main content

The Photocatalytic Technology for Wastewater Treatment

  • Chapter
  • First Online:
Photo-catalytic Control Technologies of Flue Gas Pollutants

Part of the book series: Energy and Environment Research in China ((EERC))

  • 367 Accesses

Abstract

In order to maintain the balance of desulfurization slurry material circulation system, prevent the soluble part of the chlorine concentration in flue gas to exceed a specified value, and ensure the quality of gypsum, discharge from the system is necessary, including a certain amount of waste water, which is mainly from gypsum dehydration and cleaning system. The impurities in waste water mainly include suspended, supersaturated sulfites, sulfates, and heavy metals, many of which are the primary pollutants required to be strictly controlled by national environmental standards. The photocatalysis showed great superiority on wastewater treatment. Based on the photocatalytic mechanism and the kinetics, the photocatalytic process includes primary reaction process and secondary reaction process, and the wastewater degraded with photocatalysts is studied in this chapter. Through the analysis of traditional method on degrading wastewater, it is a universal view that photocatalysis is a promising method with industrialized value. At last, several future developing views of the application of photocatalysts on wastewater treatment were put forward, which included efficiency priority, combining immobilization, mechanism in microcosmic, and application in macroscopic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. X. Duan, H. Sun, Y. Wang, J. Kang, S. Wang, N-doping-induced nonradical reaction on single-walled carbon nanotubes for catalytic phenol oxidation. ACS Catal. 5, 553–559 (2015)

    Article  CAS  Google Scholar 

  2. V. Maroga Mboula, V. Héqueta, Y. Andrès, Y. Gru, R. Colin, Assessment of the efficiency of photocatalysis on tetracycline biodegradation. Appl. Catal. B: Environ. 162, 437–444 (2015)

    Article  CAS  Google Scholar 

  3. N.G. Moustakas, F.K. Katsaros, A.G. Kontos, G. Em Romanos, D.D. Dionysiou, P. Falaras, Visible light active titanium dioxide photocatalytic filtration membranes with improved permeability and low energy consumption. Catal. Today 224, 56–69 (2014)

    Article  CAS  Google Scholar 

  4. T.E. Agustina, H.M. Ang, V.K. Vareek, A review of synergistic effect of photocatalysis and ozonation on wastewater treatment. J. Photochem. Photobiol. C: Photochem. Rev. 6, 264–273 (2005)

    Article  CAS  Google Scholar 

  5. U. Černigoj, U.L. Štangar, P. Trebše, Photocatalytic titanium dioxide coatings: Effect of substrate and template. Appl. Catal. B: Environ. 75, 229–238 (2007)

    Article  CAS  Google Scholar 

  6. M. Mehrjouei, S. Müller, D. Möller, Design and characterization of a multiphase annular falling-film reactor for water treatment. Chem. Eng. J. 263, 209–219 (2015)

    Article  CAS  Google Scholar 

  7. L.S. Li, W.P. Zhu, P.Y. Zhang, Z.Y. Chen, Photocatalytic oxidation and ozonation of catechol over carbon-black-modified nano-titanium dioxide thin films supported on Al sheet, W.Y. Han. Water Res. 37, 3646–3651 (2003)

    Article  CAS  Google Scholar 

  8. R.R. Giri, H. Ozaki, T. Ishida, Synergy of ozonation and photocatalysis to mineralize low concentration 2,4-dichlorophenoxyacetic acid in aqueous solution. Chemosphere 66, 1610–1617 (2007)

    Article  CAS  Google Scholar 

  9. M. Mehrjouei, S. Müller, D. Möller, Degradation of oxalic acid in a photocatalytic ozonation system by means of Pilkington Active™ glass. J. Photochem. Photobiol. A: Chem. 217, 417–424 (2011)

    Article  CAS  Google Scholar 

  10. G.Z. Liao, D.Y. Zhu, L.S. Li, B.Y. Lan, Enhanced photocatalytic ozonation of organics by g-C3N4 under visible light irradiation. J. Hazard. Mater. 280, 531–535 (2014)

    Article  CAS  Google Scholar 

  11. J.D. Xiao, Y.B. Xie, F. Nawaz, Y.X. Wang, P.H. Du, H.B. Cao, Preparation of short, robust and highly ordered titanium dioxide nanotube arrays and their applications as electrode. Appl. Catal. B: Environ. 183, 417–425 (2016)

    Article  CAS  Google Scholar 

  12. Y. Ling, G.Z. Liao, Y.H. Xie, J. Yin, J.Y. Huang, W.H. Feng, L.S. Li, Degradation and inactivation of tetracycline by titanium dioxide photocatalysis. J. Photochem. Photobiol. A: Chem. 329, 280–286 (2016)

    Article  CAS  Google Scholar 

  13. M.M. Ye, Z.L. Chen, X.W. Liu, Y. Ben, J.M. Shen, Ozone enhanced activity of aqueous titanium dioxide suspensions for photodegradation of 4-chloronitrobenzene. J. Hazard. Mater. 167, 1021–1027 (2009)

    Article  CAS  Google Scholar 

  14. Y. Jing, L.S. Li, Q.Y. Zhang, P. Lu, P.H. Liu, X.H. Lü, Photocatalytic ozonation of dimethyl phthalate with titanium dioxide prepared by a hydrothermal method. J. Hazard. Mater. 189, 40–47 (2011)

    Article  CAS  Google Scholar 

  15. H. Ghouas, B. Haddou, M. Kameche, Z. Derriche, C. Gourdon, Extraction of humic acid by coacervate: investigation of direct and back processes. J. Hazard. Mater. 205–206, 171–178 (2012)

    Article  CAS  Google Scholar 

  16. L.B. Reutergådh, M. Iangphasuk, Photocatalytic decolourization of reactive azo dye: A comparison between titanium dioxide and us photocatalysis. Chemosphere 35, 585–596 (1997)

    Article  Google Scholar 

  17. H. Hao, J. Zhang, The study of Iron (III) and nitrogen co-doped mesoporous titanium dioxide photocatalysts: synthesis, characterization and activity. Microporous Mesoporous Mater. 121, 52–57 (2009)

    Article  CAS  Google Scholar 

  18. Y. Xu, Y.P. Mo, J. Tian, P. Wang, H.G. Yu, J.G. Yu, The synergistic effect of graphitic N and pyrrolic N for the enhanced photocatalytic performance of nitrogen-doped graphene/titanium dioxide nanocomposites. Appl. Catal. B: Environ. 181, 810–817 (2016)

    Article  CAS  Google Scholar 

  19. P. Wang, J. Wang, X.F. Wang, H.G. Yu, J.G. Yu, M. Lei, Y.G. Wang, One-step synthesis of easy-recycling titanium dioxide-rGO nanocomposite photocatalysts with enhanced photocatalytic activity. Appl. Catal. B: Environ. 132–133, 452–459 (2013)

    Article  CAS  Google Scholar 

  20. Y.N. Huo, X.F. Chen, J. Zhang, G.F. Pan, J.P. Jia, H.X. Li, A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduced graphene oxide nanosheets. Appl. Catal. B: Environ. 148–149, 550–556 (2014)

    Article  CAS  Google Scholar 

  21. G. Marci, V. Augugliaro, M.J. López-Munoz, C. Martin, L. Palmisano, V. Rives, M. Schiavello, R.J.D. Tilley, A.M. Venezia, Synthesis of titanium dioxide via hydrolysis of titanium tetraisopropoxide and its photocatalytic activity on a suspended mixture with activated carbon in the degradation of 2-naphthol. J. Phys. Chem. B 105, 1033–1040 (2001)

    Article  CAS  Google Scholar 

  22. J.L. Li, L. Liu, Y. Yu, Y.W. Tang, H.L. Li, F.P. Du, Preparation of highly photocatalytic active nano-size titanium dioxide-Cu2O particle composites with a novel electrochemical method. Electrochem. Commun. 6, 940–943 (2004)

    Article  CAS  Google Scholar 

  23. X.Z. Li, F.B. Li, C.L. Yang, W.K. Ge, Photocatalytic degradation of 2-phenylphenol on titanium dioxide and ZnO in aqueous suspensions. J. Photochem. Photobiol. A: Chem. 141, 209–217 (2001)

    Article  CAS  Google Scholar 

  24. Y.R. Do, W. Lee, K. Dwight, A. Wold, MoO3 in self-organized titanium dioxide nanotubes for enhanced photocatalytic activity. J. Solid State Chem. 108, 198–201 (1994)

    Article  CAS  Google Scholar 

  25. X.Z. Fu, L.A. Clark, Q. Yang, Enhanced photocatalytic performance of titania-based, M.A. Anderson. Environ. Sci. Technol. 30, 647–653 (1996)

    Article  CAS  Google Scholar 

  26. Y.K. Takahashi, P. Ngaotrakanwiwat, Energy storage titanium dioxide-MoO3 photocatalysts, T. Tatsuma. Electrochim. Acta 49, 2025–2029 (2004)

    Article  CAS  Google Scholar 

  27. J. Papp, S. Soled, K. Dwight, Surface acidity and photocatalytic activity of titanium dioxide, WO3/titanium dioxide, photocatalysts, A. Wold. Chem. Mater. 6, 496–500 (1994)

    Article  CAS  Google Scholar 

  28. H. Zhao, Y.M. Dong, P.P. Jiang, G.L. Wang, J.J. Zhang, C. Zhang, ZnAl2O4 as a novel high-surface-area ozonation catalyst: one-step green synthesis, catalytic performance and mechanism. Chem. Eng. J. 260, 623–630 (2015)

    Article  CAS  Google Scholar 

  29. P. Niu, J. Hao, Efficient degradation of organic dyes by titanium dioxide–silicotungstic acid nanocomposite films: influence of inorganic salts and surfactants. Colloids Surfaces A 443, 501–507 (2014)

    Article  CAS  Google Scholar 

  30. M.A. Rauf et al., An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 276, 13–27 (2011)

    Article  CAS  Google Scholar 

  31. M. Malika et al., Evaluation of bimetal doped TiO2 in dye fragmentation and its comparison to mono-metal doped and bare catalysts. Appl. Surf. Sci. 368, 316–324 (2016)

    Article  CAS  Google Scholar 

  32. F. Xu et al., Investigation of titanium dioxide/ tungstic acid -based photocatalyst for human excrement wastewater treatment. Acta Astronaut. 146, 7–14 (2018)

    Article  CAS  Google Scholar 

  33. M. Mashkour et al., Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell. Prog. Nat. Sci. Mat. Int. 27, 647–651 (2017)

    Article  CAS  Google Scholar 

  34. G.P. Fotou, S.E. Pratsinis, Photocatalytic destruction of phenol and salicylic acid with aerosol made and commercial titania powders. Chem. Eng. Commun. 151(1), 251–269 (1996)

    Article  CAS  Google Scholar 

  35. H. Abdullah et al., Modified TiO2 photocatalyst for CO2 photocatalytic reduction: an overview. J. CO2 Utilization 22, 15–32 (2017)

    Article  CAS  Google Scholar 

  36. N. Couselo, F.S. García Einschlag, R.J. Candal, M. Jobbágy, Tungsten-doped titanium dioxide vs pure titanium dioxide photocatalysts: effects on photobleaching kinetics and mechanism. J. Phys. Chem. C 112, 1094–1100 (2008)

    Article  CAS  Google Scholar 

  37. S. Singh, P.K. Singh, H. Mahalingam, Novel floating Ag+ doped titanium dioxide/polystyrene photocatalysts for the treatment of dye wastewater. Ind. Eng. Chem. Res. 53, 16332–16340 (2014)

    Article  CAS  Google Scholar 

  38. T. Ozge, I. Hatice, D. Anatoli, The leaching kinetics and mechanism of potassium from phosphorus-potassium associated ore in hydrochloric acid at low temperature. Sep. Sci. Technol. 52, 778–786 (2017)

    Article  CAS  Google Scholar 

  39. H. Bashiri, Cu@SnS/SnO2 nanoparticles as novel sorbent for dispersive micro solid phase extraction of atorvastatin in human plasma and urine samples by high-performance liquid chromatography with UV detection: Application of central composite design (CCD), M. Rafiee. Ultrason. Sonochem. 36, 517–526 (2017)

    Article  CAS  Google Scholar 

  40. M. Abbasi, U. Rafique, G. Murtaza, M.A. Ashraf, Synthesis, characterisation and photocatalytic performance of ZnS coupled Ag2S Nanoparticles. Arab. J. Chem. (2018)

    Google Scholar 

  41. M. Anjum, R. Kumar, M.A. Barakat, Visible light driven photocatalytic degradation of organic pollutants in wastewater and real sludge using ZnO–ZnS/Ag2O–Ag2S nanocomposite. J. Taiwan Inst. Chem. Eng. 77, 227–235 (2017)

    Article  CAS  Google Scholar 

  42. S. Aghabeygi, M. Khademi-Shamami, ZnO/ZrO2 nanocomposite: sonosynthesis, characterization and its application for wastewater treatment. Ultrason. Sonochem. 41, 458–465 (2018)

    Article  CAS  Google Scholar 

  43. C. Regmi, Y.K. Kshetri, T.H. Kim, R.P. Pandey, S.K. Ray, S.W. Lee, Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment. Appl. Surf. Sci. 413, 253–265 (2017)

    Article  CAS  Google Scholar 

  44. X. Han, S. Dong, C. Yu, Y. Wang, K. Yang, J. Sun, Controllable synthesis of Sn-doped BiOCl for efficient photocatalytic degradation of mixed-dye wastewater under natural sunlight irradiation. J. Alloy. Compd. 685, 997–1007 (2016)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Wu .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Shanghai Jiao Tong University Press and Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, J., Ren, J., Pan, W., Lu, P., Qi, Y. (2019). The Photocatalytic Technology for Wastewater Treatment. In: Photo-catalytic Control Technologies of Flue Gas Pollutants. Energy and Environment Research in China. Springer, Singapore. https://doi.org/10.1007/978-981-10-8750-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8750-9_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8748-6

  • Online ISBN: 978-981-10-8750-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics