Advertisement

UVA Irradiation of BrU-Substituted DNA in the Presence of Hoechst 33258

  • Abhijit Saha
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Given that our knowledge of DNA repair is limited because of the complexity of the DNA system, a technique called UVA micro-irradiation has been developed that can be used to visualize the recruitment of DNA repair proteins at double-strand break (DSB) sites. Interestingly, Hoechst 33258 was used under micro-irradiation to sensitize 5-bromouracil (BrU)-labeled DNA, causing efficient DSBs. However, the molecular basis of DSB formation under UVA micro-irradiation remains unknown. Herein, we investigated the mechanism of DSB formation under UVA micro-irradiation conditions. Our results suggest that the generation of a uracil-5-yl radical through electron transfer from Hoechst 33258 to BrU caused DNA cleavage preferentially at self-complementary 5′-AABrUBrU-3′ sequences to induce DSB. We also investigated the DNA cleavage in the context of the nucleosome to gain a better understanding of UVA micro-irradiation in a cell-like model. We found that DNA cleavage occurred in both core and linker DNA regions although its efficiency reduced in core DNA.

Keywords

Micro-irradiation Electron transfer 5-Bromouracil DNA photoreaction Nucleosome 

References

  1. 1.
    Berns MW (1978) The laser microbeam as a probe for chromatin structure and function. Methods Cell Biol 18:277–294CrossRefGoogle Scholar
  2. 2.
    Cremer C, Cremer T (1986) Induction of chromosome shattering by ultraviolet light and caffeine: the influence of different distributions of photolesions. Mutat Res 163:33–40CrossRefGoogle Scholar
  3. 3.
    Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y (2008) GammaH2AX and cancer. Nat Rev Cancer 8:957–967.  https://doi.org/10.1038/nrc2523 CrossRefGoogle Scholar
  4. 4.
    Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694CrossRefGoogle Scholar
  5. 5.
    FitzGerald JE, Grenon M, Lowndes NF (2009) 53BP1: function and mechanisms of focal recruitment. Biochem Soc Trans 37:897–904.  https://doi.org/10.1042/BST0370897 CrossRefGoogle Scholar
  6. 6.
    Misteli T, Soutoglou E (2009) The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10:243–254.  https://doi.org/10.1038/nrm2651 CrossRefGoogle Scholar
  7. 7.
    Stucki M, Jackson SP (2006) gammaH2AX and MDC1: anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair 5:534–543.  https://doi.org/10.1016/j.dnarep.2006.01.012 CrossRefGoogle Scholar
  8. 8.
    Benjdia A, Heil K, Barends TR, Carell T, Schlichting I (2012) Structural insights into recognition and repair of UV-DNA damage by spore photoproduct lyase, a radical SAM enzyme. Nucleic Acids Res 40:9308–9318.  https://doi.org/10.1093/nar/gks603 CrossRefGoogle Scholar
  9. 9.
    Fei J, Kaczmarek N, Luch A, Glas A, Carell T, Naegeli H (2011) Regulation of nucleotide excision repair by UV-DDB: prioritization of damage recognition to internucleosomal DNA. PLoS Biol 9:e1001183.  https://doi.org/10.1371/journal.pbio.1001183 CrossRefGoogle Scholar
  10. 10.
    Limoli CL, Ward JF (1993) A new method for introducing double-strand breaks into cellular DNA. Radiat Res 134:160–169.  https://doi.org/10.2307/3578455 CrossRefGoogle Scholar
  11. 11.
    Suzuki K, Yamauchi M, Oka Y, Suzuki M, Yamashita S (2011) Creating localized DNA double-strand breaks with microirradiation. Nat Protoc 6:134–139.  https://doi.org/10.1038/nprot.2010.183 CrossRefGoogle Scholar
  12. 12.
    Walter J, Cremer T, Miyagawa K, Tashiro S (2003) A new system for laser-UVA-microirradiation of living cells. J Microsc 209:71–75Google Scholar
  13. 13.
    Beishline K, Kelly CM, Olofsson BA, Koduri S, Emrich J, Greenberg RA, Azizkhan-Clifford J (2012) Sp1 facilitates DNA double-strand break repair through a nontranscriptional mechanism. J Mol Cell Biol 32:3790–3799.  https://doi.org/10.1128/MCB.00049-12 CrossRefGoogle Scholar
  14. 14.
    Harshman KD, Dervan PB (1985) Molecular recognition of B-DNA by Hoechst 33258. Nucleic Acids Res 13:4825–4835CrossRefGoogle Scholar
  15. 15.
    Breusegem SY, Clegg RM, Loontiens FG (2002) Base-sequence specificity of Hoechst 33258 and DAPI binding to five (A/T)4 DNA sites with kinetic evidence for more than one high-affinity Hoechst 33258-AATT complex. J Mol Biol 315:1049–1061.  https://doi.org/10.1006/jmbi.2001.5301 CrossRefGoogle Scholar
  16. 16.
    Hashiya F, Saha A, Kizaki S, Li Y, Sugiyama H (2014) Locating the uracil-5-yl radical formed upon photoirradiation of 5-bromouracil-substituted DNA. Nucleic Acids Res 42:13469–13473.  https://doi.org/10.1093/nar/gku1133 CrossRefGoogle Scholar
  17. 17.
    Saha A, Kizaki S, De D, Endo M, Kim KK, Sugiyama H (2016) Examining cooperative binding of Sox2 on DC5 regulatory element upon complex formation with Pax6 through excess electron transfer assay. Nucleic Acids Res 44:e125.  https://doi.org/10.1093/nar/gkw478 CrossRefGoogle Scholar
  18. 18.
    Sugiyama H, Fujimoto K, Saito I (1996) Evidence for intrastrand C2’ hydrogen abstraction in photoirradiation of 5-halouracil-containing oligonucleotides by using stereospecifically C2’-deuterated deoxyadenosine. Tetrahedron Lett 37:1805–1808.  https://doi.org/10.1016/0040-4039(96)00123-2 CrossRefGoogle Scholar
  19. 19.
    Morinaga H, Takenaka T, Hashiya F, Kizaki S, Hashiya K, Bando T, Sugiyama H (2013) Sequence-specific electron injection into DNA from an intermolecular electron donor. Nucleic Acids Res 41:4724–4728.  https://doi.org/10.1093/nar/gkt123 CrossRefGoogle Scholar
  20. 20.
    Sugiyama H, Tsutsumi Y, Fujimoto K, Saito I (1993) Photoinduced deoxyribose C2’ oxidation in DNA. Alkali-dependent cleavage of erythrose-containing sites via a retroaldol reaction. J Am Chem Soc 115:4443–4448.  https://doi.org/10.1021/ja00064a004 CrossRefGoogle Scholar
  21. 21.
    Paul A, Nanjunda R, Kumar A, Laughlin S, Nhili R, Depauw S, Deuser SS, Chai Y, Chaudhary AS, David-Cordonnier MH, Boykin DW, Wilson WD (2015) Mixed up minor groove binders: convincing A·T specific compounds to recognize a G·C base pair. Bioorg Med Chem Lett 25:4927–4932.  https://doi.org/10.1016/j.bmcl.2015.05.005 CrossRefGoogle Scholar
  22. 22.
    Harika NK, Paul A, Stroeva E, Chai Y, Boykin DW, Germann MW, Wilson WD (2016) Imino proton NMR guides the reprogramming of A T specific minor groove binders for mixed base pair recognition. Nucleic Acids Res 44:4519–4527.  https://doi.org/10.1093/nar/gkw353 CrossRefGoogle Scholar
  23. 23.
    Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294CrossRefGoogle Scholar
  24. 24.
    Vasudevan D, Chua EY, Davey CA (2010) Crystal structures of nucleosome core particles containing the ‘601’ strong positioning sequence. J Mol Biol 403:1–10.  https://doi.org/10.1016/j.jmb.2010.08.039 CrossRefGoogle Scholar
  25. 25.
    Leslie KD, Fox KR (2002) Interaction of Hoechst 33258 and echinomycin with nucleosomal DNA fragments containing isolated ligand binding sites. Biochemistry 41:3484–3497CrossRefGoogle Scholar
  26. 26.
    Zou T, Kizaki S, Pandian GN, Sugiyama H (2016) Nucleosome assembly alters the accessibility of the antitumor agent duocarmycin B2 to duplex DNA. Chem Eur J 22:8756–8758.  https://doi.org/10.1002/chem.201600950 CrossRefGoogle Scholar
  27. 27.
    Kizaki S, Zou T, Li Y, Han YW, Suzuki Y, Harada Y, Sugiyama H (2016) Preferential 5-methylcytosine oxidation in the linker region of reconstituted positioned nucleosomes by tet1 protein. Chem Eur J 22:16598–16601.  https://doi.org/10.1002/chem.201602435 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute CurieOrsayFrance

Personalised recommendations