Development of a Novel Photochemical Detection Technique for the Analysis of Polyamide-Binding Sites

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

We demonstrated sequence-specific electron injection using pyrene-conjugated pyrrole–imidazole polyamide (PIP) on 5-bromouracil (BrU)-substituted DNA. BrU is a good electron acceptor and is able to trap an electron from pyrene-conjugated polyamides after irradiation at 365 nm. This results in strand cleavage of the DNA by generating uracil-5-yl radical from BrU after eliminating the bromide anion. Using this exciting photochemical tool, we have analyzed the binding affinity, specificity, and binding orientation of four pyrene PIPs (1–4) using two long BrU-substituted DNAs (298 and 381 bp). The electron injection sites of 1–2 confirm very low sequence specificity, whereas 3, 4 exhibited high sequence specificity; moreover, electron injection by 2 also confirms its preference for reverse binding site. The binding affinity was further validated by SPR. Thus, these results suggest that it can be a useful tool for detecting binding sites of small molecules.

Keywords

Pyrene polyamide Strand cleavage Intermolecular electron transfer BrU-substituted DNA Binding affinity 

References

  1. 1.
    Willis MC, Hicke BJ, Uhlenbeck OC, Cech TR, Koch TH (1993) Photocrosslinking of 5-iodouracil-substituted RNA and DNA to proteins. Science 262:1255–1257CrossRefGoogle Scholar
  2. 2.
    Hicke BJ, Willis MC, Koch TH, Cech TR (1994) Telomeric protein-DNA point contacts identified by photo-cross-linking using 5-bromodeoxyuridine. Biochemistry 33:3364–3373CrossRefGoogle Scholar
  3. 3.
    Ogata R, Gilbert W (1977) Contacts between the lac repressor and the thymines in the lac operator. Proc Natl Acad Sci USA 74:4973CrossRefGoogle Scholar
  4. 4.
    Krasin F, Hutchinson F (1978) Strand breaks and alkali-labile bonds induced by ultraviolet light in DNA with 5-bromouracil in vivo. Biophys J 24:657–664CrossRefGoogle Scholar
  5. 5.
    Suzuki K, Yamauchi M, Oka Y, Suzuki M, Yamashita S (2011) Creating localized DNA double-strand breaks with microirradiation. Nat Protoc 6:134–139.  https://doi.org/10.1038/nprot.2010.183 CrossRefGoogle Scholar
  6. 6.
    Krasin F, Hutchinson F (1978) Double-strand breaks from single photochemical events in DNA containing 5-bromouracil. Biophys J 24:645–656.  https://doi.org/10.1016/S0006-3495(78)85410-1 CrossRefGoogle Scholar
  7. 7.
    Sugiyama H, Tsutsumi Y, Fujimoto K, Saito I (1993) Photoinduced deoxyribose C2′ oxidation in DNA. Alkali-dependent cleavage of erythrose-containing sites via a retroaldol reaction. J Am Chem Soc 115:4443–4448.  https://doi.org/10.1021/ja00064a004 CrossRefGoogle Scholar
  8. 8.
    Sugiyama H, Tsutsumi Y, Saito I (1990) Highly sequence-selective photoreaction of 5-bromouracil-containing deoxyhexanucleotides. J Am Chem Soc 112:6720–6721.  https://doi.org/10.1021/ja00174a046
  9. 9.
    Sugiyama H, Fujimoto K, Saito I (1996) Evidence for intrastrand C2′ hydrogen abstraction in photoirradiation of 5-halouracil-containing oligonucleotides by using stereospecifically C2′-deuterated deoxyadenosine. Tetrahedron Lett 37:1805–1808.  https://doi.org/10.1016/0040-4039(96)00123-2 CrossRefGoogle Scholar
  10. 10.
    Watanabe T, Bando T, Xu Y, Tashiro R, Sugiyama H (2005) Efficient generation of 2′-deoxyuridin-5-yl at 5′-(G/C)AAXUXU-3′ (X = Br, I) sequences in duplex DNA under UV irradiation. J Am Chem Soc 127:44–45.  https://doi.org/10.1021/ja0454743
  11. 11.
    Watanabe T, Tashiro R, Sugiyama H (2007) Photoreaction at 5′-(G/C)AABrUT-3′ sequence in duplex DNA:  efficent generation of uracil-5-yl radical by charge transfer. J Am Chem Soc 129:8163–8168.  https://doi.org/10.1021/ja0692736
  12. 12.
    Hashiya F, Saha A, Kizaki S, Li Y, Sugiyama H (2014) Locating the uracil-5-yl radical formed upon photoirradiation of 5-bromouracil-substituted DNA. Nucleic Acids Res 42:13469–13473.  https://doi.org/10.1093/nar/gku1133 CrossRefGoogle Scholar
  13. 13.
    Cook GP, Greenberg MM (1996) A novel mechanism for the formation of direct strand breaks upon anaerobic photolysis of duplex DNA containing 5-Bromodeoxyuridine. J Am Chem Soc 118:10025–10030.  https://doi.org/10.1021/ja960652g CrossRefGoogle Scholar
  14. 14.
    Cook GP, Chen T, Koppisch AT, Greenberg MM (1999) The effects of secondary structure and O2 on the formation of direct strand breaks upon UV irradiation of 5-bromodeoxyuridine-containing oligonucleotides. Chem Biol 6:451–459CrossRefGoogle Scholar
  15. 15.
    Dervan PB (2001) Molecular recognition of DNA by small molecules Bioorg. Med Chem 9:2215–2235CrossRefGoogle Scholar
  16. 16.
    Van Dyke MM, Dervan PB (1984) Echinomycin binding sites on DNA. Science 225:1122CrossRefGoogle Scholar
  17. 17.
    Dervan PB (1986) Design of sequence-specific DNA-binding molecules. Science 232:464CrossRefGoogle Scholar
  18. 18.
    Brenowitz M, Senear DF, Shea MA, Ackers GK (1986) Quantitative DNase footprint titration: a method for studying protein-DNA interactions. Methods Enzymol 130:132CrossRefGoogle Scholar
  19. 19.
    Brenowitz M, Senear DF, Shea MA, Ackers GK (1986) “Footprint” titrations yield valid thermodynamic isotherms. Proc Natl Acad Sci USA 83:8462CrossRefGoogle Scholar
  20. 20.
    Senear DF, Brenowitz M, Shea MA, Ackers GK (1986) Energetics of cooperative protein-DNA interactions: comparison between quantitative deoxyribonuclease footprint titration and filter binding. Biochemistry 25:7344CrossRefGoogle Scholar
  21. 21.
    Trauger JW, Dervan PB (2001) Footprinting methods for analysis of pyrrole-imidazole polyamide/DNA complexes. Methods Enzymol 340:450–466CrossRefGoogle Scholar
  22. 22.
    Kaden P, Mayer-Enthart E, Trifonov A, Fiebig T, Wagenknecht HA (2005) Real-time spectroscopic and chemical probing of reductive electron transfer in DNA. Angew Chem Int Ed 44:1636.  https://doi.org/10.1002/anie.200462592 CrossRefGoogle Scholar
  23. 23.
    Wagenknecht HA (2003) Reductive electron transfer and transport of excess electrons in DNA. Angew Chem Int Ed 42:2454.  https://doi.org/10.1002/anie.200301629 CrossRefGoogle Scholar
  24. 24.
    Tashiro R, Ohtsuki A, Sugiyama H (2010) The distance between donor and acceptor affects the proportion of C1′ and C2′ oxidation products of DNA in a BrU-containing excess electron transfer system. J Am Chem Soc 132:14361–14363.  https://doi.org/10.1021/ja106184w CrossRefGoogle Scholar
  25. 25.
    Netzel TL, Zhao M, Nafisi K, Headrick J, Sigman MS, Eaton BE (1995) Photophysics of 2′-deoxyuridine (dU) nucleosides covalently substituted with either 1-pyrenyl or 1-pyrenoyl: observation of pyrene-to-nucleoside charge-transfer emission in 5-(1-pyrenyl)-dU. J Am Chem Soc 117:9119–9128.  https://doi.org/10.1021/ja00141a002 CrossRefGoogle Scholar
  26. 26.
    Morinaga H, Takenaka T, Hashiya F, Kizaki S, Hashiya K, Bando T, Sugiyama H (2013) Sequence-specific electron injection into DNA from an intermolecular electron donor. Nucleic Acids Res 41:4724–4728.  https://doi.org/10.1093/nar/gkt123 CrossRefGoogle Scholar
  27. 27.
    Meier JL, Yu AS, Korf I, Segal DJ, Dervan PB (2012) Guiding the design of synthetic DNA-binding molecules with massively parallel sequencing. J Am Chem Soc 134:17814–17822.  https://doi.org/10.1021/ja308888c CrossRefGoogle Scholar
  28. 28.
    Becker HC, Nordén B (1999) DNA binding mode and sequence specificity of piperazinylcarbonyloxyethyl derivatives of anthracene and pyrene. J Am Chem Soc 121:11947–11952.  https://doi.org/10.1021/ja991844p
  29. 29.
    BIAevaluation Software Handbook. Version 3 (1999) Biacore AB, Rapsgatan, SwedenGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute CurieOrsayFrance

Personalised recommendations