Synthesis and Biological Evaluation of Targeted Transcriptional Activator with HDAC8 Inhibitory Activity

  • Abhijit Saha
Part of the Springer Theses book series (Springer Theses)


We demonstrated the activation of genes that played important roles in the early development process of living animals. To do that, we developed a new class of compounds known as SAHA-PIP, which is a combination of two functional domains. One is DNA minor groove-binding pyrrole–imidazole polyamide and the other one is histone deacetylase inhibitor HDACi called SAHA. In a previous study, we developed Sδ as one of such compound exhibiting both DNA-binding and HDAC-inhibitory activity. Epigenetic activity of Sδ was attributed to the active metal-binding (–NHOH) domain of SAHA. We synthesized a derivative of Sδ, called Jδ to evaluate the role of surface recognition domain (–phenyl) of SAHA in Sδ-mediated transcriptional activation. In vitro studies revealed that Jδ displayed potent inhibitory activity against HDAC8. Jδ retained the pluripotency gene-inducing ability of Sδ when used alone and in combination with Sδ; a notable increase in the pluripotency gene expression was observed. Interestingly, Jδ significantly induced the expression of HDAC8-controlled Otx2 and Lhx1. Our results suggest that the epigenetic activity of our multifunctional molecule could be altered to improve its efficiency as a transcriptional activator for intricate gene network(s).


Biomimetic synthesis DNA recognition HDAC8 inhibition Transcriptional activators Developmental genes 


  1. 1.
    Wähnert U, Zimmer O, Luck G, Pitra O (1975) (dA-dT) Dependent inactivation of the DNA template properties by interaction with netropsin and distamycin A. Nucleic Acids Res 2:391–404CrossRefGoogle Scholar
  2. 2.
    Kopka ML, Yoon C, Goodsell D, Pjura P, Dickerson RE (1985) Binding of an antitumor drug to DNA, netropsin and C-G-C-G-A-A-T-T-BrC-G-C-G. Mol Biol 183:553–563CrossRefGoogle Scholar
  3. 3.
    Buchmueller KL, Staples AM, Howard CM, Horick SM, Uthe PB, Le NM, Cox KK, Nguyen B, Pacheco KA, Wilson WD, Lee M (2005) Extending the language of DNA molecular recognition by polyamides: unexpected influence of imidazole and pyrrole arrangement on binding affinity and specificity. J Am Chem Soc 127:742–750. CrossRefGoogle Scholar
  4. 4.
    Gottesfeld JM, Neely L, Trauger JW, Baird EE, Dervan PB (1997) Regulation of gene expression by small molecules. Nature 387:202–205CrossRefGoogle Scholar
  5. 5.
    Bando T, Sugiyama H (2006) Synthesis and biological properties of sequence-specific DNA-alkylating pyrrole-imidazole polyamides. Acc Chem Res 39:935–944CrossRefGoogle Scholar
  6. 6.
    Nishijima S, Shinohara K, Bando T, Minoshima M, Kashiwazaki G, Sugiyama H (2010) Cell permeability of Py-Im-polyamide-fluorescein conjugates: influence of molecular size and Py/Im content. Bioorg Med Chem 18:978–983. CrossRefGoogle Scholar
  7. 7.
    Tao ZF, Fujiwara T, Saito I, Sugiyama H (1999) Rational design of sequence-specific DNA alkylating agents based on duocarmycin A and pyrrole–imidazole hairpin polyamides. J Am Chem Soc 121:4961–4967. CrossRefGoogle Scholar
  8. 8.
    Tao ZF, Saito I, Sugiyama H (2000) Highly cooperative DNA Dialkylation by the homodimer of imidazole–pyrrole diamide–CPI conjugate with vinyl linker. J Am Chem Soc 122:1602–1608. CrossRefGoogle Scholar
  9. 9.
    Kashiwazaki G, Bando T, Yoshidome T, Masui S, Takagaki T, Hashiya K, Pandian GN, Yasuoka J, Akiyoshi K, Sugiyama H (2012) Synthesis and biological properties of highly sequence-specific-alkylating N-methylpyrrole-N-methylimidazole polyamide conjugates. J Med Chem 55:2057–2066. CrossRefGoogle Scholar
  10. 10.
    Takagaki T, Bando T, Sugiyama H (2012) Synthesis of pyrrole-imidazole polyamide seco-1-chloromethyl-5-hydroxy-1,2-dihydro-3 h-benz[e]indole conjugates with a vinyl linker recognizing a 7 bp DNA sequence. J Am Chem Soc 134:13074–13081. CrossRefGoogle Scholar
  11. 11.
    Best TP, Edelson BS, Nickols NG, Dervan PB (2003) Nuclear localization of pyrrole-imidazole polyamide-fluorescein conjugates in cell culture. Proc Natl Acad Sci USA 100:12063–12068. CrossRefGoogle Scholar
  12. 12.
    Fechter EJ, Olenyuk B, Dervan PB (2005) Sequence-specific fluorescence detection of DNA by Polyamide–Thiazole orange conjugates. J Am Chem Soc 127:16685–16691. CrossRefGoogle Scholar
  13. 13.
    Correa BJ, Canzio D, Kahane AL, Reddy PM, Bruice TC (2006) DNA sequence recognition by Hoechst 33258 conjugates of hairpin pyrrole/imidazole polyamides. Bioorg Med Chem Lett 16:3745–3750. CrossRefGoogle Scholar
  14. 14.
    Puckett JW, Muzikar KA, Tietjen J, Warren CL, Ansari AZ, Dervan PB (2007) Quantitative microarray profiling of DNA-binding molecules. J Am Chem Soc 129:12310–12319. CrossRefGoogle Scholar
  15. 15.
    Vaijayanthi T, Bando T, Pandian GN, Sugiyama H (2012) Progress and prospects of pyrrole-imidazole polyamide-fluorophore conjugates as sequence-selective DNA probes. Chem BioChem 13:2170–2185. Google Scholar
  16. 16.
    Vaijayanthi T, Bando T, Hashiya K, Pandian GN, Sugiyama H (2013) Design of a new fluorescent probe: pyrrole/imidazole hairpin polyamides with pyrene conjugation at their γ-turn. Bioorg Med Chem 21:852–855. CrossRefGoogle Scholar
  17. 17.
    Shi Y, Do JT, Desponts C, Hahm HS, Schöler HR, Ding S (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2:525–528. CrossRefGoogle Scholar
  18. 18.
    Huangfu D, Maehr R, Guo W, Eijkelenboom A, Snitow M, Chen AE, Melton DA (2008) Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol 26:795–797. CrossRefGoogle Scholar
  19. 19.
    Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55. CrossRefGoogle Scholar
  20. 20.
    Ohtsuki A, Kimura MT, Minoshima M, Suzuki T, Ikeda M, Bando T, Nagase H, Shinohara K, Sugiyama H (2009) Synthesis and properties of PI polyamide–SAHA conjugate. Tetrahedron Lett 50:7288–7292. CrossRefGoogle Scholar
  21. 21.
    Pandian GN, Sugiyama H (2012) Programmable genetic switches to control transcriptional machinery of pluripotency. Biotechnol J 7:798–809. CrossRefGoogle Scholar
  22. 22.
    Pandian GN et al (2011) Synthetic small molecules for epigenetic activation of pluripotency genes in mouse embryonic fibroblasts. Chem BioChem 12:2822–2828. Google Scholar
  23. 23.
    Pandian GN, Ohtsuki A, Bando T, Sato S, Hashiya K, Sugiyama H (2012) Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes. Bioorg Med Chem 20:2656–2660. CrossRefGoogle Scholar
  24. 24.
    Pandian GN, Nakano Y, Sato S, Morinaga H, Bando T, Nagase H, Sugiyama H (2012) A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts. Sci Rep 2:544. CrossRefGoogle Scholar
  25. 25.
    Pontiki E, Lintina DH (2012) Histone deacetylase inhibitors (HDACIs). Structure—activity relationships: history and new QSAR perspectives. Med Res Rev 32:1–165. CrossRefGoogle Scholar
  26. 26.
    Finnin MS, Donigian JR, Cohen A, Richon VM, Rifkind RA, Marks PA, Breslow RN, Pavletich P (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401:188–193. CrossRefGoogle Scholar
  27. 27.
    Spencer J, Amin J, Wang M, Packham G, Alwi SS, Tizzard GJ, Coles SJ, Paranal RM, Bradner JE, Heightman TD (2011) ACS Med Chem Lett 2:358–362. CrossRefGoogle Scholar
  28. 28.
    Haberland M, Mokalled MH, Montgomery RL, Olson EN (2009) Epigenetic control of skull morphogenesis by histone deacetylase 8. Gene Dev 23:1625–1630. CrossRefGoogle Scholar
  29. 29.
    Butler KV, Kalin J, Brochier C, Vistoli G, Langley B, Kozikowski AP (2010) Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A. J Am Chem Soc 132:10842–10846. CrossRefGoogle Scholar
  30. 30.
    Kidder BL, Palmer S (2012) HDAC1 regulates pluripotency and lineage specific transcriptional networks in embryonic and trophoblast stem cells. Nucleic Acids Res 40:2925–2939. CrossRefGoogle Scholar
  31. 31.
    Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E, McAnally J, Pomajzl C, Shelton JM, Richardson JA, Karsenty G, Olson EN (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119:555–566. CrossRefGoogle Scholar
  32. 32.
    Pandian GN, Sugiyama H (2012) Strategies to modulate heritable epigenetic defects in cellular machinery: lessons from nature. Pharmaceuticals 6:1–24. CrossRefGoogle Scholar
  33. 33.
    Wang J, Rao S, Chu J, Shen X, Levasseur DN, Theunissen TW, Orkin SH (2006) A protein interaction network for pluripotency of embryonic stem cells. Nature 444:364–368. CrossRefGoogle Scholar
  34. 34.
    Li R, Liang J, Ni S, Zhou T, Qing X, Li H, He W, Chen J, Li F, Zhuang Q, Qin B, Xu J, Li W, Yang J, Gan Y, Qin D, Feng S, Song H, Yang D, Zhang B, Zeng L, Lai L, Esteban MA, Pei D (2010) A mesenchymal-to-epithelial transition initiates and is required for the nuclear reprogramming of mouse fibroblasts. Cell Stem Cell 7:51–63. CrossRefGoogle Scholar
  35. 35.
    Jacobs CS, Dervan PB (2009) Modifications at the C-terminus to improve pyrrole-imidazole polyamide activity in cell culture. J Med Chem 52:7380–7388. CrossRefGoogle Scholar
  36. 36.
    Wilson BJ, Tremblay AM, Deblois G, Sylvain-Drolet G, Giguère V (2010) An acetylation switch modulates the transcriptional activity of estrogen-related receptor alpha. Mol Endocrinol 24:1349–1358. CrossRefGoogle Scholar
  37. 37.
    Puelles E, Annino A, Tuorto F, Usiello A, Acampora D, Czerny T, Brodski C, Ang SL, Wurst W, Simeone A (2004) Otx2 regulates the extent, identity and fate of neuronal progenitor domains in the ventral midbrain. Development 131:2037–2048. CrossRefGoogle Scholar
  38. 38.
    Acampora D, Di Giovannantonio LG, Simeone A (2013) Otx2 is an intrinsic determinant of the embryonic stem cell state and is required for transition to a stable epiblast stem cell condition. Development 140:43–55. CrossRefGoogle Scholar
  39. 39.
    Shawlot W, Wakamiya M, Kwan KM, Kania A, Jessell TM, Behringer RR (1999) Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation in the mouse. Development 126:4925–4932Google Scholar
  40. 40.
    Minoshima M, Bando T, Sasaki S, Fujimoto J, Sugiyama H (2008) Pyrrole-imidazole hairpin polyamides with high affinity at 5′-CGCG-3′ DNA sequence; influence of cytosine methylation on binding. Nucleic Acids Res 36:2889–2894. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute CurieOrsayFrance

Personalised recommendations