Overview of DNA Minor Groove-Binding Synthetic Small Molecules and Photochemistry of BrU-Substituted DNA

  • Abhijit Saha
Part of the Springer Theses book series (Springer Theses)


DNA was the first defined target for the anticancer drugs. Targeting DNA with small molecules for therapeutic applications is in increasing demand. Pyrrole–imidazole polyamide is one such molecule, which has shown promising selectivity for specific DNA sequences of the genome. This can bind to the minor groove DNA in a sequence-specific manner and the binding efficiency is comparable to the natural transcription factors. This molecule was used extensively to study gene regulations. In the first part of this thesis, development of this small molecule for specific gene activation is demonstrated for the purpose of regenerative medicine. In the second part, the photochemistry of BrU-labeled DNA is used to develop BrU-based detection assay. Several applications of this photochemistry are demonstrated such as the development of a photo-footprinting technique to identify the binding sites of pyrrole–imidazole polyamides. This photochemistry is also used for detection of cooperative binding of transcription factors on BrU-labeled regulatory element and the double-strand breaks in BrU-labeled DNA by Hoechst 33258. The photochemical methods described in this thesis are useful for studying small molecules and proteins binding on DNA.


Molecular recognition Pyrrole–imidazole polyamide Transcriptional activator 5-Bromouracil UV irradiation Photochemistry 


  1. 1.
    Travers AA (1989) DNA conformation and protein binding. Annu Rev Biochem 58:427–452.; (b) Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A (1979) Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature 282:680–686; (c) Sinden RR (1994) DNA structure and function. Academic Press, New York; (d) Sinden RR, Pearson CE, Potaman VN, Ussery DW (1998) Advances in Genome Biology, 5:1–141.
  2. 2.
    (a) Rich A, Zhang S (2003) Timeline: Z-DNA: the long road to biological function. Nat Rev Genet 4:566–572.; (b) Hackett JA, Feldser DM, Greider CW (2001) Telomere dysfunction increases mutation rate and genomic instability. Cell 106:275–286
  3. 3.
    Dervan PB (2001) Molecular recognition of DNA by small molecules. Bioorg Med Chem 9:2215–2235. CrossRefGoogle Scholar
  4. 4.
    Weaver RF. Molecular biology, 5th edn. (2011) DNA-protein interactions in bacteria, pp 222–238 (Chapter 9)Google Scholar
  5. 5.
    Brennan RG, Matthews BW (1989) The helix-turn-helix DNA binding motif. J Biol Chem 264:1903–1906Google Scholar
  6. 6.
    Pavletich NP, Pabo CO (1991) Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252:809–817CrossRefGoogle Scholar
  7. 7.
    Pomerantz JL, Sharp PA (1994) Homeodomain determinants of major groove recognition. Biochemistry 33:10851–10858CrossRefGoogle Scholar
  8. 8.
    König P, Richmond TJ (1993) The X-ray structure of the GCN4-bZIP bound to ATF/CREB site DNA shows the complex depends on DNA flexibility. J Mol Biol 233:139–154. CrossRefGoogle Scholar
  9. 9.
    Baraldi PG, Bovero A, Fruttarolo F, Preti D, Tabrizi MA, Pavani MG, Romagnoli R (2004) DNA minor groove binders as potential antitumor and antimicrobial agents. Med Res Rev 4:475–528CrossRefGoogle Scholar
  10. 10.
    (a) Van Dyke MW, Hertzberg RP, Dervan PB (1982) Map of distamycin, netropsin, and actinomycin binding sites on heterogeneous DNA: DNA cleavage-inhibition patterns with methidiumpropyl-EDTA.Fe(II). Proc Natl Acad Sci USA 79:5470; (b) Van Dyke MW, Dervan PB (1983) Chromomycin, mithramycin, and olivomycin binding sites on heterogeneous deoxyribonucleic acid. Footprinting with (methidiumpropyl-EDTA)iron(II). Biochemistry 22:2373; (c) Van Dyke MW, Dervan PB (1984) Echinomycin binding sites on DNA. Science 225:1122; (d) Schultz PG, Taylor JS, Dervan PB (1982) Design synthesis of a sequence-specific DNA cleaving molecule. (Distamycin-EDTA)iron(II). J Am Chem Soc 104:6861; (d) Taylor JS, Schultz PG, Dervan PB (1984) DNA affinity cleaving. sequence specific cleavage of DNA by Distamycin-EDTA·Fe(II) and EDTA-Distamycin·Fe(II) Tetrahedron 40:457–465; (e) Dervan PB (1986) Design of sequence-specific DNA-binding molecules. Science 232:464; (f) Meier JL, Yu AS, Korf I, Segal DJ, Dervan PB (2012) Guiding the design of synthetic DNA-binding molecules with massively parallel sequencing. J Am Chem Soc 134:17814–17822; (g) Anandhakumar C, Kizaki S, Bando T, Pandian GN, Sugiyama H (2015) Advancing small-molecule-based chemical biology with next-generation sequencing technologies. Chem BioChem 16:20–38.
  11. 11.
    (a) Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18; (b) Müller W, Crothers DM (1968) Studies of the binding of actinomycin and related compounds to DNA. J Mol Biol 35:251–290; (c) Bresloff JL, Crothers DM (1975) DNA-ethidium reaction kinetics: demonstration of direct ligand transfer between DNA binding sites. J Mol Biol 95:103; (d) Waring MJ, Wakelin FPC (1974) Echinomycin: a bifunctional intercalating antibiotic. Nature 252:653; (e) Arcamone F, Penco S, Orezzi P, Nicolella V, Pirelli A (1964) Structure and synthesis of distamycin A. Nature 203:1064Google Scholar
  12. 12.
    Kopka ML, Yoon C, Goodsell D, Pjura P, Dickerson RE (1985) The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc Natl Acad Sci USA 82:1376CrossRefGoogle Scholar
  13. 13.
    Pelton JG, Wemmer DE (1989) Structural characterization of a 2:1 distamycin A.d(CGCAAATTGGC) complex by two-dimensional NMR. Proc Natl Acad Sci USA 86:5723–5727CrossRefGoogle Scholar
  14. 14.
    Lown JW, Krowicki K, Bhat UG, Skorobogaty A, Ward B, Dabrowiak JC (1986) Molecular recognition between oligopeptides and nucleic acids: novel imidazole-containing oligopeptides related to netropsin that exhibit altered DNA sequence specificity. Biochemistry 25:7408CrossRefGoogle Scholar
  15. 15.
    Wade WS (1989) Ph.D. Thesis, California Institute of TechnologyGoogle Scholar
  16. 16.
    Wade WS, Mrksich M, Dervan PB (1992) Design of peptides that bind in the minor groove of DNA at 5′-(A, T)G(A, T)C(A, T)-3′ sequences by a dimeric side-by-side motif. J Am Chem Soc 114:8783. CrossRefGoogle Scholar
  17. 17.
    Mrksich M, Parks ME, Dervan PB (1994) Hairpin peptide motif. A new class of oligopeptides for sequence-specific recognition in the minor groove of double-helical DNA. J Am Chem Soc 116:7983. CrossRefGoogle Scholar
  18. 18.
    De Cian A, Delemos E, Mergny JL, Teulade-Fichou MP, Monchaud D (2007) Highly efficient G-quadruplex recognition by bisquinolinium compounds. J Am Chem Soc 129:1856–1857. CrossRefGoogle Scholar
  19. 19.
    Rodriguez R, Müller S, Yeoman JA, Trentesaux C, Riou JF, Balasubramanian S (2008) A novel small molecule that alters shelterin integrity and triggers a DNA-damage response at telomeres. J Am Chem Soc 130:15758–15759. CrossRefGoogle Scholar
  20. 20.
    Chung WJ, Heddi B, Hamon F, Teulade-Fichou MP, Phan AT (2014) Solution structure of a G-quadruplex bound to the bisquinolinium compound Phen-DC(3). Angew Chem Int Ed Engl 53:999–1002. CrossRefGoogle Scholar
  21. 21.
    Herman DM, Baird EE, Dervan PB (1998) Stereochemical control of the DNA binding affinity, sequence specificity, and orientation preference of chiral hairpin polyamides in the minor groove. J Am Chem Soc 120:1382. CrossRefGoogle Scholar
  22. 22.
    Herman DM, Turner JM, Baird EE, Dervan PB (1999) Cycle polyamide motif for recognition of the minor groove of DNA. J Am Chem Soc 1999(121):1121CrossRefGoogle Scholar
  23. 23.
    Turner JM, Swalley SE, Baird EE, Dervan PB (1998) Aliphatic/aromatic amino acid pairings for polyamide recognition in the minor groove of DNA. J Am Chem Soc 120:6219. CrossRefGoogle Scholar
  24. 24.
    Herman DM, Baird EE, Dervan PB (1999) Tandem hairpin motif for recognition in the minor groove of DNA by pyrrole-imidazole polyamides. Chem Eur J 5:975–983CrossRefGoogle Scholar
  25. 25.
    Muzikar KA, Nickols NG, Dervan PB (2009) Repression of DNA-binding dependent glucocorticoid receptor-mediated gene expression. Proc Natl Acad Sci USA 106:16598–16603. CrossRefGoogle Scholar
  26. 26.
    Nickols NG, Dervan PB (2007) Suppression of androgen receptor-mediated gene expression by a sequence-specific DNA-binding polyamide. Proc Natl Acad Sci USA 104:10418–10423. CrossRefGoogle Scholar
  27. 27.
    Nickols NG, Szablowski JO, Hargrove AE, Li BC, Raskatov JA, Dervan PB (2013) Activity of a Py-Im polyamide targeted to the estrogen response element. Mol Cancer Ther 12:675–684. CrossRefGoogle Scholar
  28. 28.
    Yang F, Nickols NG, Li BC, Marinov GK, Said JW, Dervan PB (2013) Antitumor activity of a pyrrole-imidazole polyamide. Proc Natl Acad Sci USA 110:1863–1868. CrossRefGoogle Scholar
  29. 29.
    Bando T, Sugiyama H (2006) Synthesis and biological properties of sequence-specific DNA-alkylating pyrrole-imidazole polyamides. Acc Chem Res 39:935–944. CrossRefGoogle Scholar
  30. 30.
    Hiraoka K, Inoue T, Taylor RD, Watanabe T, Koshikawa N, Yoda H, Shinohara K, Takatori A, Sugimoto H, Maru Y, Denda T, Fujiwara K, Balmain A, Ozaki T, Bando T, Sugiyama H, Nagase H (2015) Inhibition of KRAS codon 12 mutants using a novel DNA-alkylating pyrrole-imidazole polyamide conjugate. Nat Commun 6:6706.
  31. 31.
    Mapp AK, Ansari AZ, Ptashne M, Dervan PB (2000) Activation of gene expression by small molecule transcription factors. Proc Natl Acad Sci USA 97:3930CrossRefGoogle Scholar
  32. 32.
    Ansari AZ, Mapp AK, Nguyen DH, Dervan PB, Ptashne M (2001) Towards a minimal motif for artificial transcriptional activators. Chem Biol 8:583CrossRefGoogle Scholar
  33. 33.
    Kwon Y, Arndt HD, Mao Q, Choi Y, Kawazoe Y, Dervan PB, Uesugi M (2004) Small molecule transcription factor mimic. J Am Chem Soc 126:15940–15941. CrossRefGoogle Scholar
  34. 34.
    Kornberg RD, Lorch Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294CrossRefGoogle Scholar
  35. 35.
    Pandian GN, Sugiyama H (2012) Programmable genetic switches to control transcriptional machinery of pluripotency. Biotechnol J 7:798–809. CrossRefGoogle Scholar
  36. 36.
    Pontiki E, Lintina DH (2012) Histone deacetylase inhibitors (HDACIs). Structure-activity relationships: history and new QSAR perspectives. Med Res Rev 32:1–165. CrossRefGoogle Scholar
  37. 37.
    Gottesfeld JM, Melander C, Suto RK, Raviol H, Luger K, Dervan PB (2001) Sequence-specific recognition of DNA in the nucleosome by pyrrole-imidazole polyamides. J Mol Biol 309:615–629. CrossRefGoogle Scholar
  38. 38.
    Ohtsuki A, Kimura MT, Minoshima M, Suzuki T, Ikeda M, Bando T, Nagase H, Shinohara K, Sugiyama H (2009) Synthesis and properties of PI polyamide—SAHA conjugate. Tetrahedron Lett 50:7288–7292. CrossRefGoogle Scholar
  39. 39.
    Pandian GN et al (2011) Synthetic small molecules for epigenetic activation of pluripotency genes in mouse embryonic fibroblasts. Chem Biochem 12:2822–2828. Google Scholar
  40. 40.
    Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676. CrossRefGoogle Scholar
  41. 41.
    Pandian GN, Ohtsuki A, Bando T, Sato S, Hashiya K, Sugiyama H (2012) Development of programmable small DNA-binding molecules with epigenetic activity for induction of core pluripotency genes. Bioorg Med Chem 20:2656–2660. CrossRefGoogle Scholar
  42. 42.
    Pandian GN, Nakano Y, Sato S, Morinaga H, Bando T, Nagase H, Sugiyama H (2012) A synthetic small molecule for rapid induction of multiple pluripotency genes in mouse embryonic fibroblasts. Sci Rep 2:544. CrossRefGoogle Scholar
  43. 43.
    Pandian GN, Sato S, Anandhakumar C, Taniguchi J, Takashima K, Syed J, Han L, Saha A, Bando T, Nagase H, Sugiyama H (2014) Identification of a small molecule that turns ON the pluripotency gene circuitry in human fibroblasts. ACS Chem Biol 9:2729–2736. CrossRefGoogle Scholar
  44. 44.
    Pandian GN, Taniguchi J, Junetha S, Sato S, Han L, Saha A, AnandhaKumar C, Bando T, Nagase H, Vaijayanthi T, Taylor RD, Sugiyama H (2014) Distinct DNA-based epigenetic switches trigger transcriptional activation of silent genes in human dermal fibroblasts. Sci Rep 4:3843. CrossRefGoogle Scholar
  45. 45.
    Han L, Pandian GN, Junetha S, Sato S, Anandhakumar C, Taniguchi J, Saha A, Bando T, Nagase H, Sugiyama H (2013) A synthetic small molecule for targeted transcriptional activation of germ cell genes in a human somatic cell. Angew Chem Int Ed 52:13410–13413. CrossRefGoogle Scholar
  46. 46.
    (a) Willis MC, Hicke BJ, Uhlenbeck OC, Cech TR, Koch TH (1993) Photocrosslinking of 5-iodouracil-substituted RNA and DNA to proteins. Science 262:1255–1257; (b) Hicke BJ, Willis MC, Koch TH, Cech TR (1994) Telomeric protein-DNA point contacts identified by photo-cross-linking using 5-bromodeoxyuridine. Biochemistry 33:3364–3373; (c) Ogata R, Gilbert W (1977) Contacts between the lac repressor and the thymines in the lac operator. Proc Natl Acad Sci USA 74:4973Google Scholar
  47. 47.
    Suzuki K, Yamauchi M, Oka Y, Suzuki M, Yamashita S (2011) Creating localized DNA double-strand breaks with microirradiation. Nat Protoc 6:134–139. CrossRefGoogle Scholar
  48. 48.
    (a) Krasin F, Hutchinson F (1978) Strand breaks and alkali-labile bonds induced by ultraviolet light in DNA with 5-bromouracil in vivo. Biophys J 24:657–664; (b) Krasin F, Hutchinson F (1978) Double-strand breaks from single photochemical events in DNA containing 5-bromouracil. Biophys J. 24:645–656.; (c) Sugiyama H, Tsutsumi Y, Fujimoto K, Saito I (1993) Photoinduced deoxyribose C2′ oxidation in DNA. Alkali-dependent cleavage of erythrose-containing sites via a retroaldol reaction. J Am Chem Soc 115:4443–4448.
  49. 49.
    Davidson RL, Broeker P, Ashman CR (1988) DNA base sequence changes and sequence specificity of bromodeoxyuridine-induced mutations in mammalian cells. Proc Natl Acad Sci USA 85:4406–4410CrossRefGoogle Scholar
  50. 50.
    Giese B (2002) Long-distance electron transfer through DNA. Annu Rev Biochem 71:51–70. CrossRefGoogle Scholar
  51. 51.
    Wagenknecht HA (2003) Reductive electron transfer and transport of excess electrons in DNA. Angew Chem Int Ed 42:2454–2460. CrossRefGoogle Scholar
  52. 52.
    Prunkl C, Berndl S, Wanninger-Weiss C, Barbaric J, Wagenknecht HA (2010) Photoinduced short-range electron transfer in DNA with fluorescent DNA bases: lessons from ethidium and thiazole orange as charge donors. Phys Chem Chem Phys 12:32–43. CrossRefGoogle Scholar
  53. 53.
    Schuster G (ed) (2004) Longe-range charge transfer in DNA I. Springer, BerlinGoogle Scholar
  54. 54.
    Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME (1998) Charge transfer and transport in DNA. Proc Natl Acad Sci USA 95:12759–12765CrossRefGoogle Scholar
  55. 55.
    Steenken S, Jovanovic SV (1997) How easily oxidizable is DNA? one-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. J Am Chem Soc 119:617–618. CrossRefGoogle Scholar
  56. 56.
    Giese B, Amaudrut J, Köhler AK, Spormann M, Wessely S (2001) Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412:318–320. CrossRefGoogle Scholar
  57. 57.
    (a) Seidel CAM, Schulz A, Sauer MHM (1996) Nucleobase-specific quenching of fluorescent dyes. 1. Nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J Phys Chem 100:5541–5553.; (b) Steenken S, Telo JP, Novais HM, Candeias LP (1992) One-electron-reduction potentials of pyrimidine bases, nucleosides, and nucleotides in aqueous solution. Consequences for DNA redox chemistry. J Am Chem Soc 114:4701–4709.
  58. 58.
    Hall DB, Holmlin RE, Barton JK (1996) Oxidative DNA damage through long-range electron transfer. Nature 382:731–735. CrossRefGoogle Scholar
  59. 59.
    Sugiyama H, Saito I (1996) Theoretical studies of GG-specific photocleavage of DNA via electron transfer: significant lowering of ionization potential and 5′-localization of HOMO of stacked GG bases in B-Form DNA. J Am Chem Soc 118:7063–7068. CrossRefGoogle Scholar
  60. 60.
    Boon EM, Salas JE, Barton JK (2002) An electrical probe of protein–DNA interactions on DNA-modified surfaces. Nat Biotechnol 20:282–286. CrossRefGoogle Scholar
  61. 61.
    Niemeyer CM, Adler M (2002) Nanomechanical devices based on DNA. Angew Chem Int Ed Engl 41:3779–3783.<3779:AID-ANIE3779>3.0.CO;2-F CrossRefGoogle Scholar
  62. 62.
    Haas C, Kräling K, Cichon M, Rahe N, Carell T (2004) Excess electron transfer driven DNA repair does not depend on the transfer direction. Angew Chem Int Ed Engl 43:1842–1844. CrossRefGoogle Scholar
  63. 63.
    Ito T, Rokita SE (2003) Excess electron transfer from an internally conjugated aromatic amine to 5-bromo-2-deoxyuridine in DNA. J Am Chem Soc 125:11480–11481. CrossRefGoogle Scholar
  64. 64.
    Wagner C, Wagenknecht HA (2005) Reductive electron transfer in phenothiazine-modified DNA is dependent on the base sequence. Chem-Eur J 11:1871–1876. CrossRefGoogle Scholar
  65. 65.
    (a) Sugiyama H, Tsutsumi Y Saito I (1990) Highly sequence-selective photoreaction of 5-bromouracil-containing deoxyhexanucleotides. J Am Chem Soc 112:6720–6721.; (b) Watanabe T, Bando T, Xu Y, Tashiro R Sugiyama H (2005) Efficient generation of 2′-deoxyuridin-5-yl at 5′-(G/C)AA(X)U(X)U-3′ (X = Br, I) sequences in duplex DNA under UV irradiation. J Am Chem Soc 127:44–45.; (c) Watanabe T, Tashiro R Sugiyama H (2007) Photoreaction at 5′-(G/C)AABrUT-3′ Sequence in duplex DNA:efficient generation of uracil-5-yl radical by charge transfer. J Am Chem Soc 129:8163–8168.; (d) Hashiya F, Saha A, Kizaki S, Li Y, Sugiyama H (2014) Locating the uracil-5-yl radical formed upon photoirradiation of 5-bromouracil-substituted DNA. Nucleic Acids Res 42:13469–13473.
  66. 66.
    Sugiyama H, Fujimoto K, Saito I (1996) Evidence for intrastrand C2′ hydrogen abstraction in photoirradiation of 5-halouracil-containing oligonucleotides by using stereospecifically C2′-deuterated deoxyadenosine. Tetrahedron Lett 37:1805–1808. CrossRefGoogle Scholar
  67. 67.
    Xu Y, Tashiro R, Sugiyama H (2007) Photochemical determination of different DNA structures. Nat Protoc 2:78–87. CrossRefGoogle Scholar
  68. 68.
    Morinaga H, Takenaka T, Hashiya F, Kizaki S, Hashiya K, Bando T, Sugiyama H (2013) Sequence-specific electron injection into DNA from an intermolecular electron donor. Nucleic Acids Res 41:4724–4728. CrossRefGoogle Scholar
  69. 69.
    BehmoarasT Toulme JJ, Hélène C (1981) A tryptophan-containing peptide recognizes and cleaves DNA at apurinic sites. Nature 292:858–859. CrossRefGoogle Scholar
  70. 70.
    (a) DeRosa MC, Sancar A, Barton JK (2005) Electrically monitoring DNA repair by photolyase. Proc Natl Acad Sci USA 102:10788–10792.; (b) Boon EM, Livingston AL, Chimiel NH, David SS, Barton JK (2003) DNA-mediated charge transport for DNA repair. Proc Natl Acad Sci USA 100:12543–12547.; (c) Yavin E, Boal AK, Stemp ED, Boon EM, Livingston AL, O’Shea VL, David SS, Barton JK (2005) Protein-DNA charge transport: redox activation of a DNA repair protein by guanine radical. Proc Natl Acad Sci USA 102:3546–3551.
  71. 71.
    Kim S, Li Y, Sancar A (1992) The third chromophore of DNA photolyase: Trp-277 of Escherichia coli DNA photolyase repairs thymine dimers by direct electron transfer. Proc Natl Acad Sci USA 89:900–904CrossRefGoogle Scholar
  72. 72.
    Cullis PM, Jones GDD, Symons MCR, Lea JS (1987) Electron transfer from protein to DNA in irradiated chromatin. Nature 330:773–774. CrossRefGoogle Scholar
  73. 73.
    Tashiro R, Wang AH, Sugiyama H (2006) Photoreactivation of DNA by an archaeal nucleoprotein Sso7d. Proc Natl Acad Sci USA 103:16655–16659. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute CurieOrsayFrance

Personalised recommendations