Countering Zika Virus: The USAMRIID Response

  • Robert G. Lowen
  • Thomas M. Bocan
  • Christopher D. Kane
  • Lisa H. Cazares
  • Krishna P. Kota
  • Jason T. Ladner
  • Farooq Nasar
  • Louise Pitt
  • Darci R. Smith
  • Veronica Soloveva
  • Mei G. Sun
  • Xiankun Zeng
  • Sina Bavari
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1062)


The United States Army Medical Research Institute of Infectious Diseases (USAMRIID) possesses an array of expertise in diverse capabilities for the characterization of emerging infectious diseases from the pathogen itself to human or animal infection models. The recent Zika virus (ZIKV) outbreak was a challenge and an opportunity to put these capabilities to work as a cohesive unit to quickly respond to a rapidly developing threat. Next-generation sequencing was used to characterize virus stocks and to understand the introduction and spread of ZIKV in the United States. High Content Imaging was used to establish a High Content Screening process to evaluate antiviral therapies. Functional genomics was used to identify critical host factors for ZIKV infection. An animal model using the temporal blockade of IFN-I in immunocompetent laboratory mice was investigated in conjunction with Positron Emission Tomography to study ZIKV. Correlative light and electron microscopy was used to examine ZIKV interaction with host cells in culture and infected animals. A quantitative mass spectrometry approach was used to examine the protein and metabolite type or concentration changes that occur during ZIKV infection in blood, cells, and tissues. Multiplex fluorescence in situ hybridization was used to confirm ZIKV replication in mouse and NHP tissues. The integrated rapid response approach developed at USAMRIID presented in this review was successfully applied and provides a new template pathway to follow if a new biological threat emerges. This streamlined approach will increase the likelihood that novel medical countermeasures could be rapidly developed, evaluated, and translated into the clinic.


Animal models of infection Next-generation sequencing High content imaging PET imaging Rapid medical countermeasure to emerging viruses 



Funding for ZIKV research was provided by DARPA. The authors would like to thank Dr. Michael Wiley, Ms. Karla Prieto, Mr. Daniel Reyes, Ms. Elyse Nagle, Dr. Mariano Sanchez-Lockhart and Dr. Gustavo Palacios for their contributions toward the genomic characterization. The authors would like to acknowledge Mr. Kyle Kuszpit and Robert Stafford for their assistance in performing the imaging studies and Drs. Xiang Zhang, Falguni Basuli, and Rolf Swenson from the Imaging Probe Development Center at NIH for providing the PET radiotracers. The authors would also like to thank Mr. Brandon Kline and Ms. Kathy Kuehl for EM support and Ms. Tara Kenny, Ms. Xiaoli Chi, Mr. Rouzbeh Zamani, Mr. Glenn Gomba, Mr. Collin Dube for their support of HCI screening work.


  1. 1.
    Aliota MT et al (2016) Characterization of Lethal Zika virus infection in AG129 mice. PLoS Negl Trop Dis 10(4):e0004682CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Atieh T, Baronti C, de Lamballerie X, Nougairede A (2016) Simple reverse genetics systems for Asian and African Zika viruses. Sci Rep 6:39384CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bernards N, Pottier G, Theze B, Dolle F, Boisgard R (2015) In vivo evaluation of inflammatory bowel disease with the aid of muPET and the translocator protein 18 kDa radioligand [18F]DPA-714. Mol Imaging Biol 17(1):67–75CrossRefPubMedGoogle Scholar
  4. 4.
    Bhatnagar J, Rabeneck DB, Martines RB, Reagan-Steiner S, Ermias Y, Estetter LB, Suzuki T, Ritter J, Keating MK, Hale G, Gary J, Muehlenbachs A, Lambert A, Lanciotti R, Oduyebo T, Meaney-Delman D, Bolanos F, Saad EA, Shieh WJ, Zaki SR (2017) Zika virus RNA replication and persistence in brain and placental tissue. Emerg Infect Dis 23(3):405–414CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bocan TM, Panchal RG, Bavari S (2015) Applications of in vivo imaging in the evaluation of the pathophysiology of viral and bacterial infections and in development of countermeasures to BSL3/4 pathogens. Mol Imaging Biol 17(1):4–17CrossRefPubMedGoogle Scholar
  6. 6.
    Boigard H, Alimova A, Martin GR, Katz A, Gottlieb P, Galarza JM (2017) Zika virus-like particle (VLP) based vaccine. PLoS Negl Trop Dis 11(5):e0005608CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Cazares LH, Troyer DA, Wang B, Drake RR, Semmes OJ (2011) MALDI tissue imaging: from biomarker discovery to clinical applications. Anal Bioanal Chem 401(1):17–27CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Chan JF, Yip CC, Tsang JO, Tee KM, Cai JP, Chik KK, Zhu Z, Chan CC, Choi GK, Sridhar S, Zhang AJ, Lu G, Chiu K, Lo AC, Tsao SW, Kok KH, Jin DY, Chan KH, Yuen KY (2016) Differential cell line susceptibility to the emerging Zika virus: implications for disease pathogenesis, non-vector-borne human transmission and animal reservoirs. Emerg Microbes Infect 5:e93CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Cortese M, Goellner S, Acosta EG, Neufeldt CJ, Oleksiuk O, Lampe M, Haselmann U, Funaya C, Schieber N, Ronchi P, Schorb M, Pruunsild P, Schwab Y, Chatel-Chaix L, Ruggieri A, Bartenschlager R (2017) Ultrastructural characterization of Zika virus replication factories. Cell Rep 18(9):2113–2123CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Dowall SD, Graham VA, Rayner E, Atkinson B, Hall G, Watson RJ, Bosworth A, Bonney LC, Kitchen S, Hewson R (2016) A susceptible mouse model for Zika virus infection. PLoS Negl Trop Dis 10(5):e0004658CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Dowd KA, Ko SY, Morabito KM, Yang ES, Pelc RS, DeMaso CR, Castilho LR, Abbink P, Boyd M, Nityanandam R, Gordon DN, Gallagher JR, Chen X, Todd JP, Tsybovsky Y, Harris A, Huang YS, Higgs S, Vanlandingham DL, Andersen H, Lewis MG, De La Barrera R, Eckels KH, Jarman RG, Nason MC, Barouch DH, Roederer M, Kong WP, Mascola JR, Pierson TC, Graham BS (2016) Rapid development of a DNA vaccine for Zika virus. Science 354(6309):237–240CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ellison DW, Ladner JT, Buathong R, Alera MT, Wiley MR, Hermann L, Rutvisuttinunt W, Klungthong C, Chinnawirotpisan P, Manasatienkij W, Melendrez MC, Maljkovic Berry I, Thaisomboonsuk B, Ong-Ajchaowlerd P, Kaneechit W, Velasco JM, Tac-An IA, Villa D, Lago CB, Roque Jr VG, Plipat T, Nisalak A, Srikiatkhachorn A, Fernandez S, Yoon IK, Haddow AD, Palacios GF, Jarman RG, Macareo LR (2016). Complete genome sequences of Zika virus strains isolated from the blood of patients in Thailand in 2014 and the Philippines in 2012. Genome Announc 4(3)CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fujimura Y, Miura D (2014) MALDI mass spectrometry imaging for visualizing in situ metabolism of endogenous metabolites and dietary phytochemicals. Meta 4(2):319–346Google Scholar
  14. 14.
    Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, Platt DJ, Gorman MJ, Richner JM, Caine EA, Salazar V, Moley KH, Diamond MS (2016) Zika virus infection damages the testes in mice. Nature 540(7633):438–442CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Grubaugh ND, Ladner JT, Kraemer MUG, Dudas G, Tan AL, Gangavarapu K, Wiley MR, White S, Theze J, Magnani DM, Andersen KG (2017) Genomic epidemiology reveals multiple introductions of Zika virus into the United States. Nature 54(7658):401–405CrossRefGoogle Scholar
  16. 16.
    Harhausen D, Sudmann V, Khojasteh U, Muller J, Zille M, Graham K, Thiele A, Dyrks T, Dirnagl U, Wunder A (2013) Specific imaging of inflammation with the 18 kDa translocator protein ligand DPA-714 in animal models of epilepsy and stroke. PLoS One 8(8):e69529CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hellstrom K, Vihinen H, Kallio K, Jokitalo E, Ahola T (2015) Correlative light and electron microscopy enables viral replication studies at the ultrastructural level. Methods 90:49–56CrossRefPubMedGoogle Scholar
  18. 18.
    Herderschee J, Fenwick C, Pantaleo G, Roger T, Calandra T (2015) Emerging single-cell technologies in immunology. J Leukoc Biol 98(1):23–32CrossRefPubMedGoogle Scholar
  19. 19.
    Herholz K (2003) PET studies in dementia. Ann Nucl Med 17(2):79–89CrossRefPubMedGoogle Scholar
  20. 20.
    Kostyuchenko VA, Lim EX, Zhang S, Fibriansah G, Ng TS, Ooi JS, Shi J, Lok SM (2016) Structure of the thermally stable Zika virus. Nature 533(7603):425–428CrossRefPubMedGoogle Scholar
  21. 21.
    Kruger DH, Schneck P, Gelderblom HR (2000) Helmut Ruska and the visualisation of viruses. Lancet 355(9216):1713–1717CrossRefPubMedGoogle Scholar
  22. 22.
    Ladner JT, Wiley MR, Prieto K, Yasuda CY, Nagle E, Kasper MR, Reyes D, Vasilakis N, Heang V, Weaver SC, Haddow A, Tesh RB, Sovann L, Palacios G (2016) Complete genome sequences of five Zika virus isolates. Genome Announc 4(3)Google Scholar
  23. 23.
    Larson DR, Johnson MC, Webb WW, Vogt VM (2005) Visualization of retrovirus budding with correlated light and electron microscopy. Proc Natl Acad Sci U S A 102(43):15453–15458CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lavisse S, Inoue K, Jan C, Peyronneau MA, Petit F, Goutal S, Dauguet J, Guillermier M, Dolle F, Rbah-Vidal L, Van Camp N, Aron-Badin R, Remy P, Hantraye P (2015) [18F]DPA-714 PET imaging of translocator protein TSPO (18 kDa) in the normal and excitotoxically-lesioned nonhuman primate brain. Eur J Nucl Med Mol Imaging 42(3):478–494CrossRefPubMedGoogle Scholar
  25. 25.
    Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, Miner JJ, Diamond MS (2016) A Mouse Model of Zika Virus Pathogenesis. Cell Host Microbe 19(5):720–730CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Leguia M, Loyola S, Rios J, Juarez D, Guevara C, Silva M, Prieto K, Wiley M, Kasper MR, Palacios G, Bausch DG (2015) Full genomic characterization of a Saffold virus isolated in Peru. Pathogens 4(4):816–825CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Li S, Shi Y, Zheng K, Dai J, Li X, Yuan S, Chen L, Huang J (2017) Morphologic and molecular characterization of a strain of Zika virus imported into Guangdong, China. PLoS One 12(1):e0169256CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, Abraham J, Adair T, Aggarwal R, Ahn SY, Almazroa M, Memish ZA (2012) Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2095–2128CrossRefGoogle Scholar
  29. 29.
    Ly A, Buck A, Balluff B, Sun N, Gorzolka K, Feuchtinger A, Janssen KP, Kuppen PJ, van de Velde CJ, Weirich G, Erlmeier F, Langer R, Aubele M, Zitzelsberger H, McDonnell L, Aichler M, Walch A (2016) High-mass-resolution MALDI mass spectrometry imaging of metabolites from formalin-fixed paraffin-embedded tissue. Nat Protoc 11(8):1428–1443CrossRefPubMedGoogle Scholar
  30. 30.
    Martinez MG, Snapp EL, Perumal GS, Macaluso FP, Kielian M (2014) Imaging the alphavirus exit pathway. J Virol 88(12):6922–6933CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mielke R, Kessler J, Szelies B, Herholz K, Wienhard K, Heiss WD (1998) Normal and pathological aging–findings of positron-emission-tomography. J Neural Transm (Vienna) 105(8–9):821–837CrossRefGoogle Scholar
  32. 32.
    Miner JJ, Cao B, Govero J, Smith AM, Fernandez E, Cabrera OH, Garber C, Noll M, Klein RS, Noguchi KK, Mysorekar IU, Diamond MS (2016) Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 165(5):1081–1091CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Morgan C, Godman GC, Breitenfeld PM, Rose HM (1960) A correlative study by electron and light microscopy of the development of type 5 adenovirus. I. Electron microscopy. J Exp Med 112:373–382CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Mudhasani R, Kota KP, Retterer C, Tran JP, Tritsch SR, Zamani R, Whitehouse CA, Bavari S (2015) High-content image-based screening of a signal transduction pathway inhibitor small-molecule library against highly pathogenic RNA viruses. J Biomol Screen 20(1):141–152CrossRefPubMedGoogle Scholar
  35. 35.
    Mudhasani R, Tran JP, Retterer C, Kota KP, Whitehouse CA, Bavari S (2016) Protein Kinase R degradation is essential for fift valley fever virus infection and is regulated by SKP1-CUL1-F-box (SCF)FBXW11-NSs E3 ligase. PLoS Pathog 12(2):e1005437CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Nazerian K, Purchase HG (1970) Combined fluorescent-antibody and electron microscopy study of Marek’s disease virus-infected cell culture. J Virol 5(1):79–90PubMedPubMedCentralGoogle Scholar
  37. 37.
    Noda T, Kolesnikova L, Becker S, Kawaoka Y (2011) The importance of the NP: VP35 ratio in Ebola virus nucleocapsid formation. J Infect Dis 204(Suppl 3):S878–S883CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Osuna CE, Lim SY, Deleage C, Griffin BD, Stein D, Schroeder LT, Omange R, Best K, Luo M, Hraber PT, Andersen-Elyard H, Ojeda EF, Huang S, Vanlandingham DL, Higgs S, Perelson AS, Estes JD, Safronetz D, Lewis MG, Whitney JB (2016) Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat Med 22(12):1448–1455CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Panchal RG, Kota KP, Spurgers KB, Ruthel G, Tran JP, Boltz RC, Bavari S (2010) Development of high-content imaging assays for lethal viral pathogens. J Biomol Screen 15(7):755–765CrossRefPubMedGoogle Scholar
  40. 40.
    Perreira JM, Meraner P, Brass AL (2016) Functional genomic strategies for elucidating human-virus interactions: will CRISPR knockout RNAi and haploid cells? Adv Virus Res 94:1–51CrossRefPubMedGoogle Scholar
  41. 41.
    Pottier G, Bernards N, Dolle F, Boisgard R (2014) [(1)(8)F]DPA-714 as a biomarker for positron emission tomography imaging of rheumatoid arthritis in an animal model. Arthritis Res Ther 16(2):R69CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Radoshitzky SR, Pegoraro G, Chi XO, Dong L, Chiang CY, Jozwick L, Clester JC, Cooper CL, Courier D, Langan DP, Underwood K, Kuehl KA, Sun MG, Cai Y, Yu SQ, Burk R, Zamani R, Kota K, Kuhn JH, Bavari S (2016) siRNA screen identifies trafficking host factors that modulate alphavirus infection. PLoS Pathog 12(3):e1005466CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Reid SP, Tritsch SR, Kota K, Chiang CY, Dong L, Kenny T, Brueggemann EE, Ward MD, Cazares LH, Bavari S (2015) Sphingosine kinase 2 is a chikungunya virus host factor co-localized with the viral replication complex. Emerg Microbes Infect 4(10):e61CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rella CE, Ruel N, Eugenin EA (2014) Development of imaging techniques to study the pathogenesis of biosafety level 2/3 infectious agents. Pathog Dis 72(3):167–173PubMedPubMedCentralGoogle Scholar
  45. 45.
    Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA, Auguste AJ, Langsjoen RM, Paessler S, Vasilakis N, Weaver SC (2016) Characterization of a novel murine model to study Zika virus. Am J Trop Med Hyg 94(6):1362–1369CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sapparapu G, Fernandez E, Kose N, Bin C, Fox JM, Bombardi RG, Zhao H, Nelson CA, Bryan AL, Barnes T, Davidson E, Mysorekar IU, Fremont DH, Doranz BJ, Diamond MS, Crowe JE (2016) Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 540(7633):443–447CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, John SP, Aker AM, Renzette N, Robbins DR, Guo Z, Green S, Kowalik TF, Brass AL (2016) Identification of Zika virus and Dengue virus dependency factors using functional genomics. Cell Rep 16(1):232–246CrossRefPubMedGoogle Scholar
  48. 48.
    Shan C, Xie X, Muruato AE, Rossi SL, Roundy CM, Azar SR, Yang Y, Tesh RB, Bourne N, Barrett AD, Vasilakis N, Weaver SC, Shi PY (2016) An infectious cDNA clone of Zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors. Cell Host Microbe 19(6):891–900CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Sheehan KC, Lai KS, Dunn GP, Bruce AT, Diamond MS, Heutel JD, Dungo-Arthur C, Carrero JA, White JM, Hertzog PJ, Schreiber RD (2006) Blocking monoclonal antibodies specific for mouse IFN-alpha/beta receptor subunit 1 (IFNAR-1) from mice immunized by in vivo hydrodynamic transfection. J Interf Cytokine Res 26(11):804–819CrossRefGoogle Scholar
  50. 50.
    Sirohi D, Chen Z, Sun L, Klose T, Pierson TC, Rossmann MG, Kuhn RJ (2016) The 3.8 A resolution cryo-EM structure of Zika virus. Science 352(6284):467–470CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Smith DR, Hollidge B, Daye S, Zeng X, Blancett C, Kuszpit K, Bocan T, Koehler JW, Coyne S, Minogue T, Kenny T, Chi X, Yim S, Miller L, Schmaljohn C, Bavari S, Golden JW (2017) Neuropathogenesis of Zika virus in a highly susceptible immunocompetent mouse model after antibody blockade of type I interferon. PLoS Negl Trop Dis 11(1):e0005296CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Spuul P, Balistreri G, Hellstrom K, Golubtsov AV, Jokitalo E, Ahola T (2011) Assembly of alphavirus replication complexes from RNA and protein components in a novel trans-replication system in mammalian cells. J Virol 85(10):4739–4751CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sridhar S, K. K. To, Chan JF, Lau SK, Woo PC, Yuen KY (2015) A systematic approach to novel virus discovery in emerging infectious disease outbreaks. J Mol Diagn 17(3):230–241CrossRefPubMedGoogle Scholar
  54. 54.
    Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904CrossRefPubMedGoogle Scholar
  55. 55.
    van der Eijk AA, van Genderen PJ, Verdijk RM, Reusken CB, Mogling R, van Kampen JJ, Widagdo W, Aron GI, GeurtsvanKessel CH, Pas SD, Raj VS, Haagmans BL, Koopmans MP (2016) Miscarriage associated with Zika virus infection. N Engl J Med 375(10):1002–1004CrossRefPubMedGoogle Scholar
  56. 56.
    Wang F, Flanagan J, Su N, Wang LC, Bui S, Nielson A, Wu X, Vo HT, Ma XJ, Luo Y (2012) RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J Mol Diagn 14(1):22–29CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Zmurko J, Marques RE, Schols D, Verbeken E, Kaptein SJ, Neyts J (2016) The viral polymerase inhibitor 7-Deaza-2′-C-Methyladenosine is a potent inhibitor of in vitro Zika virus replication and delays disease progression in a Robust Mouse infection model. PLoS Negl Trop Dis 10(5):e0004695CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Robert G. Lowen
    • 1
  • Thomas M. Bocan
    • 1
  • Christopher D. Kane
    • 1
  • Lisa H. Cazares
    • 1
  • Krishna P. Kota
    • 1
  • Jason T. Ladner
    • 2
  • Farooq Nasar
    • 1
  • Louise Pitt
    • 1
  • Darci R. Smith
    • 1
  • Veronica Soloveva
    • 1
  • Mei G. Sun
    • 1
  • Xiankun Zeng
    • 1
  • Sina Bavari
    • 1
  1. 1.U.S. Army Medical Research Institute of Infectious DiseasesFt. DetrickUSA
  2. 2.The Pathogen and Microbiome InstituteNorthern Arizona UniversityFlagstaffUSA

Personalised recommendations