Structural Insights into the Broad-Spectrum Antiviral Target Endoplasmic Reticulum Alpha-Glucosidase II

  • Alessandro T. Caputo
  • Dominic S. Alonzi
  • John L. Kiappes
  • Weston B. Struwe
  • Alice Cross
  • Souradeep Basu
  • Benoit Darlot
  • Pietro Roversi
  • Nicole Zitzmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1062)


Targeting the host-cell endoplasmic reticulum quality control (ERQC) pathway is an effective broad-spectrum antiviral strategy. The two ER resident α-glucosidases whose sequential action permits entry in this pathway are the targets of glucomimetic inhibitors. Knowledge of the molecular details of the ER α-glucosidase II (α-Glu II) structure was limited. We determined crystal structures of a trypsinolytic fragment of murine α-Glu II, alone and in complex with key catalytic cycle ligands, and four different broad-spectrum antiviral iminosugar inhibitors, two of which are currently in clinical trials against dengue fever. The structures highlight novel portions of the enzyme outside its catalytic pocket which contribute to its activity and substrate specificity. These crystal structures and hydrogen-deuterium exchange mass spectrometry of the murine ER alpha glucosidase II heterodimer uncover the quaternary arrangement of the enzyme’s α- and β-subunits, and suggest a conformational rearrangement of ER α-Glu II upon association of the enzyme with client glycoproteins.


Endplasmic reticulum quality control Broad spectrum antiviral Glucomimetic inhibitors Hydrogen-deuterium exchange mass spectrometry Antiviral iminosugar 


  1. 1.
    Arendt CW, Ostergaard HL (1997) Identification of the CD45-associated 116-kDa and 80-kDa proteins as the alpha- and beta-subunits of alpha-glucosidase II. J Biol Chem 272:13117–13125CrossRefPubMedGoogle Scholar
  2. 2.
    Caputo AT, Alonzi DS, Marti L, Reca I-B, Kiappes JL, Struwe WB, Cross A, Basu S, Lowe ED, Darlot B et al (2016) Structures of mammalian ER α-glucosidase II capture the binding modes of broad-spectrum iminosugar antivirals. Proc Natl Acad Sci 113:E4630–E4638CrossRefPubMedGoogle Scholar
  3. 3.
    Chang J, Block TM, Guo J-T (2013) Antiviral therapies targeting host ER alpha-glucosidases: current status and future directions. Antivir Res 99:251–260CrossRefPubMedGoogle Scholar
  4. 4.
    Dalziel M, Crispin M, Scanlan CN, Zitzmann N, Dwek RA (2014) Emerging principles for the therapeutic exploitation of glycosylation. Science 343:1235681–1235681CrossRefPubMedGoogle Scholar
  5. 5.
    Gloster TM, Vocadlo DJ (2012) Developing inhibitors of glycan processing enzymes as tools for enabling glycobiology. Nat Chem Biol. 8:683-94CrossRefPubMedGoogle Scholar
  6. 6.
    Hammond C, Braakman I, Helenius A (1994) Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci U S A 91:913–917CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jeyakumar M, Dwek RA, Butters TD, Platt FM (2005) Storage solutions: treating lysosomal disorders of the brain. Nat Rev Neurosci 6:713–725PubMedGoogle Scholar
  8. 8.
    Khoury GA, Baliban RC, Floudas CA (2011) Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 1Google Scholar
  9. 9.
    Lyseng-Williamson KA (2014) Mitglustat: a review of its use in Niemann-Pick disease type C. Drugs. 74:61-74CrossRefGoogle Scholar
  10. 10.
    Olson LJ, Orsi R, Alculumbre SG, Peterson FC, Stigliano ID, Parodi AJ, D'Alessio C, Dahms NM (2013) Structure of the lectin mannose 6-phosphate receptor homology (MRH) domain of glucosidase II, an enzyme that regulates glycoprotein folding quality control in the endoplasmic reticulum. J Biol Chem 288:16460–16475CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Olson LJ, Orsi R, Peterson FC, Parodi AJ, Kim J-JP, D’Alessio C, Dahms NM (2015) Crystal structure and functional analyses of the lectin domain of glucosidase II: insights into Oligomannose recognition. Biochemistry 54:4097–4111CrossRefPubMedGoogle Scholar
  12. 12.
    Perry ST, Buck MD, Plummer EM, Penmasta RA, Batra H, Stavale EJ, Warfield KL, Dwek RA, Butters TD, Alonzi DS et al (2013) An iminosugar with potent inhibition of dengue virus infection in vivo. Antivir Res 98:35–43CrossRefPubMedGoogle Scholar
  13. 13.
    Pieren M, Galli C, Denzel A, Molinari M (2005) The use of calnexin and calreticulin by cellular and viral glycoproteins. J Biol Chem 280:28265–28271CrossRefPubMedGoogle Scholar
  14. 14.
    Satoh T, Toshimori T, Noda M, Uchiyama S, Kato K (2016a) Interaction mode between catalytic and regulatory subunits in glucosidase II involved in ER glycoprotein quality control. Protein Sci:1–27Google Scholar
  15. 15.
    Satoh T, Toshimori T, Yan G, Yamaguchi T, Kato K (2016b) Structural basis for two-step glucose trimming by glucosidase II involved in ER glycoprotein quality control. Sci Rep 6:20575CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sayce AC, Miller JL, Zitzmann N (2010) Targeting a host process as an antiviral approach against dengue virus. Trends Microbiol 18:323–330CrossRefPubMedGoogle Scholar
  17. 17.
    Sayce AC, Alonzi DS, Killingbeck SS, Tyrrell BE, Hill ML, Caputo AT, Iwaki R, Kinami K, Ide D, Kiappes JL et al (2016) Iminosugars inhibit Dengue virus production via inhibition of ER alpha-glucosidases-not glycolipid processing enzymes. PLoS Negl Trop Dis 10:e0004524CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sim L, Jayakanthan K, Mohan S, Nasi R, Johnston BD, Pinto BM, Rose DR (2010) New glucosidase inhibitors from an ayurvedic herbal treatment for type 2 diabetes: structures and inhibition of human intestinal maltase-glucoamylase with compounds from Salacia reticulata. Biochemistry 49:443–451CrossRefPubMedGoogle Scholar
  19. 19.
    Sinnott ML (1990) Catalytic mechanism of enzymic glycosyl transfer. Chem Rev 90:1171–1202CrossRefGoogle Scholar
  20. 20.
    Stavale EJ, Vu H, Sampath A, Ramstedt U, Warfield KL (2015) In vivo therapeutic protection against influenza A (H1N1) oseltamivir-sensitive and resistant viruses by the iminosugar UV-4. PLoS One.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Stigliano ID, Alculumbre SG, Labriola CA, Parodi AJ, D’Alessio C (2011) Glucosidase II and N-glycan mannose content regulate the half-lives of monoglucosylated species in vivo. Mol Biol Cell 22:1810–1823CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Totani K, Ihara Y, Matsuo I, Ito Y (2006) Substrate specificity analysis of endoplasmic reticulum glucosidase II using synthetic high mannose-type glycans. J Biol Chem 281:31502–31508CrossRefPubMedGoogle Scholar
  23. 23.
    Trombetta ES, Simons JF, Helenius A (1996) Endoplasmic reticulum glucosidase II is composed of a catalytic subunit, conserved from yeast to mammals, and a tightly bound noncatalytic HDEL-containing subunit. J Biol Chem 271:27509–27516CrossRefPubMedGoogle Scholar
  24. 24.
    Trombetta ES, Fleming KG, Helenius A (2001) Quaternary and domain structure of glycoprotein processing glucosidase II. Biochemistry 40:10717–10722CrossRefPubMedGoogle Scholar
  25. 25.
    Warfield KL, Plummer E, Alonzi DS, Wolfe GW, Sampath A, Nguyen T, Butters TD, Enterlein SG, Stavale EJ, Shresta S, Ramstedt U (2015) A Novel Iminosugar UV-12 with Activity against the Diverse Viruses Influenza and Dengue (Novel Iminosugar Antiviral for Influenza and Dengue). Viruses 7:2404-27CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Warfield KL, Plummer EM, Sayce AC, Alonzi DS, Tang W, Tyrrell BE, Hill ML, Caputo AT, Killingbeck SS, Beatty PR et al (2016) Inhibition of endoplasmic reticulum glucosidases is required for in vitro and in vivo dengue antiviral activity by the iminosugar UV-4. Antivir Res 129:93–98CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Alessandro T. Caputo
    • 1
  • Dominic S. Alonzi
    • 1
  • John L. Kiappes
    • 1
  • Weston B. Struwe
    • 1
  • Alice Cross
    • 1
  • Souradeep Basu
    • 1
  • Benoit Darlot
    • 1
    • 2
  • Pietro Roversi
    • 1
  • Nicole Zitzmann
    • 1
  1. 1.Department of Biochemistry, Oxford Glycobiology InstituteUniversity of OxfordOxfordUK
  2. 2.Ecole Nationale Supérieure de Chimie de MontpellierMontpellier Cedex 5France

Personalised recommendations