Advertisement

Understanding the Human T Cell Response to Dengue Virus

  • Laura Rivino
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1062)

Abstract

Our understanding of how T cells respond to dengue virus has greatly advanced in the last decade but important questions still remain unanswered. Dengue virus infection elicits a broad anti-viral T cell response with NS3, NS4b and NS5 being the main targets for CD8+ T cells, which dominate the response while the structural proteins capsid, envelope and the secreted protein NS1 are the preferential targets for CD4+ T cells. Upon T cell activation during acute dengue infection, dengue-specific T cells acquire expression of the skin-homing marker cutaneous associated antigen (CLA) and they can be found at high frequencies in the skin of infected patients. This suggests that the skin represents an important site for the immuno surveillance of dengue virus. The immunoprotective role of skin-homing dengue-specific T cells, their potential involvement in pathological skin manifestations and their long-term persistence as tissue resident T cells to provide immediate onsite protection are open questions that we are currently investigating. The contribution of pre-existing dengue-specific T cells towards protective immunity and/or immunopathology during secondary dengue infection remains a major knowledge gap. The evidence supporting these opposing outcomes and our current understanding of the characteristics of the human T cell response to dengue virus will be discussed.

Keywords

CD4+ and CD8+ T cells Original antigenic sin Skin homing marker Dengue T cells Tissue-resident T cells 

Notes

Acknowledgments

This work is supported by a Cooperative Basic Research Grant- New Investigator Grant (CBRG-NIG R-913-301-289-213) awarded by the Singapore National Medical Research Council to Laura Rivino.

References

  1. 1.
    Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996) Phenotypic analysis of antigen-specific T lymphocytes. Science 274(5284):94–96CrossRefGoogle Scholar
  2. 2.
    Campbell DJ, Butcher EC. (2002) Rapid acquisition of tissue-specific homing phenotypes by CD4(+) T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med 195(1):135–141. The Rockefeller University Press.  https://doi.org/10.1084/jem.20011502 CrossRefGoogle Scholar
  3. 3.
    Cerny D, Haniffa M, Shin A, Bigliardi P, Tan BK, Lee B, Poidinger M, Tan EY, Ginhoux F, Fink K (2014) Selective susceptibility of human skin antigen presenting cells to productive dengue virus infection (Kuhn RJ (ed)). PLoS Pathogens 10(12):e1004548. Public Library of Science.  https://doi.org/10.1371/journal.ppat.1004548 CrossRefGoogle Scholar
  4. 4.
    Chen HD, Fraire AE, Joris I, Brehm MA, Welsh RM, Selin LK (2001) Memory CD8+ T cells in heterologous antiviral immunity and immunopathology in the lung. Nat Immunol 2(11):1067–1076.  https://doi.org/10.1038/ni727 CrossRefPubMedGoogle Scholar
  5. 5.
    Clark RA (2015) Resident memory T cells in human health and disease. Sci Transl Med 7(269):: 269rv1–269rv1. American Association for the Advancement of Science.  https://doi.org/10.1126/scitranslmed.3010641
  6. 6.
    Duangchinda T, Dejnirattisai W, Vasanawathana S, Limpitikul W, Tangthawornchaikul N, Malasit P, Mongkolsapaya J, Screaton G (2010) Immunodominant T-cell responses to dengue virus NS3 are associated with DHF. Proc Natl Acad Sci 107(39):16922–16927.  https://doi.org/10.1073/pnas.1010867107 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Dudda JC, Simon JC, Martin S (2004) Dendritic cell immunization route determines CD8+ T cell trafficking to inflamed skin: role for tissue microenvironment and dendritic cells in establishment of T cell-homing subsets. J Immunol 172(2):857–863CrossRefGoogle Scholar
  8. 8.
    Dung NTP, Duyen HTL, Thuy NTV, Ngoc TV, Chau NVV, Hien TT, Rowland-Jones SL et al (2010) Timing of CD8+ T cell responses in relation to commencement of capillary leakage in children with dengue. J Immunol 184(12):7281–7287.  https://doi.org/10.4049/jimmunol.0903262 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Friberg H, Burns L, Woda M, Kalayanarooj S, Endy TP, Stephens HAF, Green S, Rothman AL, Mathew A (2010, April) Memory CD8+ T cells from naturally acquired primary dengue virus infection are highly cross-reactive. Immunol Cell Biol:1–8. Nature Publishing Group.  https://doi.org/10.1038/icb.2010.61
  10. 10.
    Friberg H, Bashyam H, Toyosaki-Maeda T, Potts JA, Greenough T, Kalayanarooj S, Gibbons RV et al (2011) Cross-reactivity and expansion of dengue-specific T cells during acute primary and secondary infections in humans. Sci Rep 1(August).  https://doi.org/10.1038/srep00051
  11. 11.
    Halstead SB (2014) Dengue antibody-dependent enhancement: knowns and unknowns. Microbiol Spect 2(6). American Society of Microbiology.  https://doi.org/10.1128/microbiolspec.AID-0022-2014
  12. 12.
    Jiang X, Clark RA, Liu L, Wagers AJ, Fuhlbrigge RC, Kupper TS (2012) Skin infection generates non-migratory memory CD8+ TRM cells providing global skin immunity. Nature 483(7388):227–231.  https://doi.org/10.1038/nature10851 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Klenerman P, Zinkernagel RM (1998) Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 394(6692):482–485.  https://doi.org/10.1038/28860 CrossRefPubMedGoogle Scholar
  14. 14.
    Kurane I, Matsutani T, Suzuki R, Takasaki T, Kalayanarooj S, Green S, Rothman AL, Ennis FA (2011) T-Cell Responses to Dengue Virus in Humans. Trop Med Health 39(4 Supplement):S45–S51.  https://doi.org/10.2149/tmh.2011-S09 CrossRefGoogle Scholar
  15. 15.
    Liu L, Zhong Q, Tian T, Dubin K, Athale SK, Kupper TS (2010) Epidermal injury and infection during poxvirus immunization is crucial for the generation of highly protective T cell – mediated immunity. Nat Med 16(2):224–227. Nature Publishing Group.  https://doi.org/10.1038/nm.2078 CrossRefGoogle Scholar
  16. 16.
    Mangada MM, Rothman AL (2005) Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J Immunol 175(4):2676–2683CrossRefGoogle Scholar
  17. 17.
    Miller JD, van der Most RG, Akondy RS, Glidewell JT, Albott S, Masopust D, Murali-Krishna K et al (2008) Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity 28(5):710–722.  https://doi.org/10.1016/j.immuni.2008.02.020 CrossRefPubMedGoogle Scholar
  18. 18.
    Mongkolsapaya J, Dejnirattisai W, Xu X-n, Vasanawathana S, Tangthawornchaikul N, Chairunsri A, Sawasdivorn S et al (2003) Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9(7):921–927.  https://doi.org/10.1038/nm887 CrossRefPubMedGoogle Scholar
  19. 19.
    Mongkolsapaya J, Duangchinda T, Dejnirattisai W, Vasanawathana S, Avirutnan P, Jairungsri A, Khemnu N et al (2006) T cell responses in dengue hemorrhagic fever: are cross-reactive T cells suboptimal? J Immunol 176(6):3821–3829CrossRefGoogle Scholar
  20. 20.
    Mora JR, Bono MR, Manjunath N, Weninger W, Cavanagh LL, Rosemblatt M, von Andrian UH (2003) Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nat Publ Group 424(6944):88–93.  https://doi.org/10.1038/nature01726 CrossRefGoogle Scholar
  21. 21.
    Prestwood TR, Morar MM, Zellweger RM, Miller R, May MM, Yauch LE, Lada SM, Shresta S (2012) Gamma interferon (IFN-Γ) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-Α/Β receptor-deficient mice. J Virol 86(23):12561–12570. American Society for Microbiology.  https://doi.org/10.1128/JVI.06743-11 CrossRefGoogle Scholar
  22. 22.
    Rivino (2016) T cell immunity to dengue virus and implications for vaccine design. Expert Rev Vaccines 15(4):443–453.  https://doi.org/10.1586/14760584.2016.1116948 CrossRefPubMedGoogle Scholar
  23. 23.
    Rivino L, Messi M, Jarossay D, Lanzavecchia A, Sallusto F, Geginat J (2004) Chemokine receptor expression identifies Pre-T helper (Th)1, Pre-Th2, and nonpolarized cells among human CD4+ central memory T cells. J Exp Med 200(6):725–735.  https://doi.org/10.1084/jem.20040774 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rivino L, Kumaran EAP, Jovanovic V, Nadua K, Teo EW, Pang SW, Teo GH et al (2013) Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J Virol 87(5):2693–2706.  https://doi.org/10.1128/JVI.02675-12 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Rivino L, Kumaran EA, Thein TL, Too CT, Hao Gan VC, Hanson BJ, Wilder-Smith A et al (2015) Virus-specific T lymphocytes home to the skin during natural dengue infection. Sci Transl Med 7(278):278ra35–278ra35.  https://doi.org/10.1126/scitranslmed.aaa0526 CrossRefGoogle Scholar
  26. 26.
    Sandalova, E, Laccabue D, Boni C, Tan AT, Fink K, Ooi EE, Chua R, Shafaeddin Schreve B, Ferrari C, Bertoletti A (2010) Contribution of herpesvirus specific CD8 T cells to anti-viral T cell response in humans (Selin L (ed)). PLoS Pathogens 6(8): e1001051.  https://doi.org/10.1371/journal.ppat.1001051 CrossRefGoogle Scholar
  27. 27.
    Sandoval F, Terme M, Nizard M, Badoual C, Bureau MF, Freyburger L, Clement O et al (2013) Mucosal imprinting of vaccine-induced CD8+ T cells is crucial to inhibit the growth of mucosal tumors. Sci Transl Med 5(172):172ra20–172ra20.  https://doi.org/10.1126/scitranslmed.3004888 CrossRefGoogle Scholar
  28. 28.
    Schmid MA, Harris E (2014) Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for dengue virus replication (Richard JK (ed)). PLoS Pathogens 10(12):e1004541. Public Library of Science.  https://doi.org/10.1371/journal.ppat.1004541 CrossRefGoogle Scholar
  29. 29.
    Simmons CP, Dong T, Chau NV, Dung NTP, Chau TNB, Thao LTT, Dung NT, Hien TT, Rowland-Jones S, Farrar J (2005) Early T-cell responses to dengue virus epitopes in Vietnamese adults with secondary dengue virus infections. J Virol 79(9):5665–5675.  https://doi.org/10.1128/JVI.79.9.5665-5675.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Townsley E, Woda M, Thomas SJ, Kalayanarooj S, Gibbons RV, Nisalak A, Srikiatkhachorn A et al (2014) Distinct activation phenotype of a highly conserved novel HLA-B57-restricted epitope during dengue virus infection. Immunology 141(1):27–38.  https://doi.org/10.1111/imm.12161 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Weiskopf, Daniela, Angelo MA, de Azeredo EL, Sidney J, Greenbaum JA, Fernando AN, Broadwater A et al (2013) Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. Proc Nat Acad Sci U S A 110(22):E2046–2053. National Acad Sciences.  https://doi.org/10.1073/pnas.1305227110 CrossRefGoogle Scholar
  32. 32.
    Weiskopf D, Angelo MA, Sidney J, Peters B, Shresta S, Sette A (2014a) Immunodominance changes as a function of the infecting dengue virus serotype and primary versus secondary infection. J Virol 88(19):11383–11394.  https://doi.org/10.1128/JVI.01108-14 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Weiskopf D, Angelo MA, Bangs DJ, Sidney J, Paul S, Peters B, de Silva AD et al (2014b) The human CD8 +T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes (Diamond MS (ed)). J Virol 89(1):120–128.  https://doi.org/10.1128/JVI.02129-14
  34. 34.
    Weiskopf D, Bangs DJ, Sidney J, Kolla RV, de Silva AD, de Silva AM, Crotty S, Peters B, Sette A (2015) Dengue virus infection elicits highly polarized CX3CR1 +Cytotoxic CD4 +T cells associated with protective immunity. Proc Natl Acad Sci 112(31):E4256–E4263.  https://doi.org/10.1073/pnas.1505956112 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wherry EJ, Ahmed R (2004) Memory CD8 T-cell differentiation during viral infection. J Virol 78(11):5535–5545.  https://doi.org/10.1128/JVI.78.11.5535-5545.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Yauch LE, Zellweger RM, Kotturi MF, Qutubuddin A, Sidney J, Peters B, Prestwood TR, Sette A, Shresta S (2009) A protective role for dengue virus-specific CD8+ T cells. J Immunol 182(8):4865–4873.  https://doi.org/10.4049/jimmunol.0801974 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Yauch, Lauren E, Prestwood TR, May MM, Morar MM, Zellweger RM, Peters B, Sette A, Shresta S (2010) CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. J Immunol (Baltimore MD, 1950) 185(9):5405–5416. American Association of Immunologists.  https://doi.org/10.4049/jimmunol.1001709.185 CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Program in Emerging Infectious Diseases, Duke-NUS Medical SchoolSingaporeSingapore

Personalised recommendations