The Transactions of NS3 and NS5 in Flaviviral RNA Replication

  • Moon Y. F. Tay
  • Subhash G. VasudevanEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1062)


Dengue virus (DENV) replication occurs in virus-induced vesicles that contain the replication complex (RC) where viral RNA, viral proteins and host proteins participate in RNA-RNA, RNA-protein and protein-protein interactions to ensure viral genome synthesis. However, the details of the multitude of interactions involved in the biogenesis of the infectious virion are not fully understood. In this review, we will focus on the interaction between non-structural (NS) proteins NS3 and NS5, as well as their interactions with viral RNA and briefly also the interaction of NS5 with the host nuclear transport receptor protein importin-α. The multifunctional NS3 protease/helicase and NS5 methyltransferase (MTase)/RNA-dependent RNA polymerase (RdRp) contain all the enzymatic activities required to synthesize the viral RNA genome. The success stories of drug discovery and development with Hepatitis C virus (HCV), a member of the Flaviviridae family, has led to the view that DENV NS3 and NS5 may be attractive antiviral drug targets. However, more than 10 years of intensive research effort by Novatis has revealed that they are not “low hanging fruits” and therefore, the search for potent directly acting antivirals (DAAs) remains a pipeline goal for several medium to large drug discovery enterprises. The effort to discover DAAs for DENV has been boosted by the epidemic outbreak of the closely related flavivirus member – Zika virus (ZIKV). Because the viral RNA replication occurs within a molecular machine that is composed several viral and host proteins, much interest has turned to characterising functionally essential protein-protein interactions in order to identify potential allosteric inhibitor binding sites within the RC.


NS5 RNA-dependent RNA polymerase Dengue virus infectious clone NS3 helicase Site-directed mutagenesis NS3 and NS5 antibodies 



We thank our past and present collaborators David A. Jans, Jade K. Forwood, Andrew Brooks, Magnus Johansson, Andrew Davidson, Julien Lescar, Dahai Luo, Yap T.L., Siew Pheng Lim, Nicole J. Moreland, Indira Umareddy, Aruna Sampath, Yongqian Zhao, Ivan H.W. Ng, Kitti W.K. Chan, Wuan Geok Saw, Gerhard Gruber, Crystall Swarbrick, Shu Ann Chan, Kate Smith, Gottfried Otting, Zheng Yin, Li Shang and Rolf Hilgenfeld for their important contributions to understanding of flavivirus NS proteins. The research on NS3 and NS5 interactions of flaviviruses in the Vasudevan lab is supported by National Medical Research Council (NMRC/CBRG/0103/2016) and National Research Foundation (NRF-CRP17-2017-04) in Singapore.


  1. 1.
    Akey DL, Brown WC, Dutta S et al (2014) Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system. Science 343:881–885CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Aleshin AE, Shiryaev SA, Strongin AY et al (2007) Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. Protein Sci 16:795–806CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Amberg SM, Nestorowicz A, McCourt DW et al (1994) NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. J Virol 68:3794–3802PubMedPubMedCentralGoogle Scholar
  4. 4.
    Amberg SM, Rice CM (1999) Mutagenesis of the NS2B-NS3-mediated cleavage site in the flavivirus capsid protein demonstrates a requirement for coordinated processing. J Virol 73:8083–8094PubMedPubMedCentralGoogle Scholar
  5. 5.
    Arias CF, Preugschat F, Strauss JH (1993) Dengue 2 virus NS2B and NS3 form a stable complex that can cleave NS3 within the helicase domain. Virology 193:888–899CrossRefPubMedGoogle Scholar
  6. 6.
    Ashour J, Laurent-Rolle M, Shi PY et al (2009) NS5 of dengue virus mediates STAT2 binding and degradation. J Virol 83:5408–5418CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bartelma G, Padmanabhan R (2002) Expression, purification, and characterization of the RNA 5′-triphosphatase activity of dengue virus type 2 nonstructural protein 3. Virology 299:122–132CrossRefPubMedGoogle Scholar
  8. 8.
    Benarroch D, Selisko B, Locatelli GA et al (2004) The RNA helicase, nucleotide 5′-triphosphatase, and RNA 5′-triphosphatase activities of Dengue virus protein NS3 are Mg2+−dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328:208–218CrossRefPubMedGoogle Scholar
  9. 9.
    Brooks AJ, Johansson M, John AV et al (2002) The interdomain region of dengue NS5 protein that binds to the viral helicase NS3 contains independently functional importin beta 1 and importin alpha/beta-recognized nuclear localization signals. J Biol Chem 277:36399–36407CrossRefPubMedGoogle Scholar
  10. 10.
    Cahour A, Falgout B, Lai CJ (1992) Cleavage of the dengue virus polyprotein at the NS3/NS4A and NS4B/NS5 junctions is mediated by viral protease NS2B-NS3, whereas NS4A/NS4B may be processed by a cellular protease. J Virol 66:1535–1542PubMedPubMedCentralGoogle Scholar
  11. 11.
    Chambers TJ, Grakoui A, Rice CM (1991) Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. J Virol 65:6042–6050PubMedPubMedCentralGoogle Scholar
  12. 12.
    Chambers TJ, Hahn CS, Galler R et al (1990) Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688CrossRefPubMedGoogle Scholar
  13. 13.
    Chen CJ, Kuo MD, Chien LJ et al (1997) RNA-protein interactions: Involvement of NS3, NS5, and 3′ noncoding regions of Japanese encephalitis virus genomic RNA. J Virol 71:3466–3473PubMedPubMedCentralGoogle Scholar
  14. 14.
    Collins TJ (2007) ImageJ for microscopy. BioTechniques 43:25–30CrossRefPubMedGoogle Scholar
  15. 15.
    Cui T, Sugrue RJ, Xu Q et al (1998) Recombinant dengue virus type 1 NS3 protein exhibits specific viral RNA binding and NTPase activity regulated by the NS5 protein. Virology 246:409–417CrossRefPubMedGoogle Scholar
  16. 16.
    Donnelly M, Verhagen J, Elliott G (2007) RNA binding by the herpes simplex virus type 1 nucleocytoplasmic shuttling protein UL47 is mediated by an N-terminal arginine-rich domain that also functions as its nuclear localization signal. J Virol 81:2283–2296CrossRefPubMedGoogle Scholar
  17. 17.
    Egloff MP, Benarroch D, Selisko B et al (2002) An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21:2757–2768CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Egloff MP, Decroly E, Malet H et al (2007) Structural and functional analysis of methylation and 5′-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 372:723–736CrossRefPubMedGoogle Scholar
  19. 19.
    Elster C, Larsen K, Gagnon J et al (1997) Influenza virus M1 protein binds to RNA through its nuclear localization signal. J Gen Virol 78(Pt 7):1589–1596CrossRefPubMedGoogle Scholar
  20. 20.
    Erbel P, Schiering N, D’Arcy A et al (2006) Structural basis for the activation of flaviviral NS3 proteases from Dengue and West Nile virus. Nat Struct Mol Biol 13:372–373CrossRefGoogle Scholar
  21. 21.
    Forwood JK, Brooks A, Briggs LJ, Jans DA, Vasudevan SG (1999) The 37 amino acid linker between the putative methyltransferase and polymerase domains of dengue virus NS5 protein contains a functional nuclear localization signal. Biochem Biophys Res Comm 257:731–737Google Scholar
  22. 22.
    Gorbalenya AE, Donchenko AP, Koonin EV et al (1989) N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res 17:3889–3897CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gutsche I, Coulibaly F, Voss JE et al (2011) Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein. Proc Natl Acad Sci U S A 108:8003–8008CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Heaton NS, Perera R, Berger KL et al (2010) Dengue virus nonstructural protein 3 redistributes fatty acid synthase to sites of viral replication and increases cellular fatty acid synthesis. Proc Natl Acad Sci U S A 107:17345–17350CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hodge K, Tunghirun C, Kamkaew M et al (2016) Identification of a conserved RdRp-RNA interface required for flaviviral replication. J Biol Chem 291:17437–17449CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Iglesias NG, Filomatori CV, Gamarnik AV (2011) The F1 motif of dengue virus polymerase NS5 is involved in promoter-dependent RNA synthesis. J Virol 85:5745–5756CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Issur M, Geiss BJ, Bougie I et al (2009) The flavivirus NS5 protein is a true RNA guanylyltransferase that catalyzes a two-step reaction to form the RNA cap structure. RNA 15:2340–2350CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Johansson M, Brooks AJ, Jans DA et al (2001) A small region of the dengue virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the nuclear transport receptor importin-beta and the viral helicase, NS3. J Gen Virol 82:735–745CrossRefPubMedGoogle Scholar
  29. 29.
    Kapoor M, Zhang LW, Ramachandra M et al (1995) Association between NS3 and NS5 proteins of dengue virus type 2 in the putative RNA replicase is linked to differential phosphorylation of NS5. J Biol Chem 270:19100–19106CrossRefPubMedGoogle Scholar
  30. 30 .
    Kelley JF, Kaufusi PH, Volper EM et al (2011) Maturation of dengue virus nonstructural protein 4B in monocytes enhances production of dengue hemorrhagic fever-associated chemokines and cytokines. Virology 418:27–39CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Klema VJ, Ye M, Hindupur A et al (2016) Dengue Virus Nonstructural Protein 5 (NS5) Assembles into a Dimer with a Unique Methyltransferase and Polymerase Interface. PLoS Pathog 12:e1005451CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kosugi S, Hasebe M, Tomita M et al (2009) Systematic identification of cell cycle-dependent yeast nucleocytoplasmic shuttling proteins by prediction of composite motifs. Proc Natl Acad Sci U S A 106:10171–10176CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kroschewski H, Lim SP, Butcher RE et al (2008) Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. J Biol Chem 283:19410–19421CrossRefPubMedGoogle Scholar
  34. 34.
    Kumar A, Buhler S, Selisko B et al (2013) Nuclear localization of dengue virus nonstructural protein 5 does not strictly correlate with efficient viral RNA replication and inhibition of type I interferon signaling. J Virol 87:4545–4557CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Leung D, Schroder K, White H et al (2001) Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J Biol Chem 276:45762–45771CrossRefPubMedGoogle Scholar
  36. 36.
    Li HT, Clum S, You SH et al (1999) The serine protease and RNA-stimulated nucleoside triphosphatase and RNA helicase functional domains of Dengue virus type 2 NS3 converge within a region of 20 amino acids. J Virol 73:3108–3116PubMedPubMedCentralGoogle Scholar
  37. 37.
    Li J, Lim SP, Beer D et al (2005) Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem 280:28766–28774CrossRefPubMedGoogle Scholar
  38. 38.
    Lim SP, Koh JH, Seh CC et al (2013) A crystal structure of the dengue virus non-structural protein 5 (NS5) polymerase delineates interdomain amino acid residues that enhance its thermostability and de novo initiation activities. J Biol Chem 288:31105–31114CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lindenbach BD, Rice CM (1999) Genetic interaction of flavivirus nonstructural proteins NS1 and NS4A as a determinant of replicase function. J Virol 73:4611–4621PubMedPubMedCentralGoogle Scholar
  40. 40.
    Lindenbach BD, Thiel H, Rice CM (2007) Flaviviridae: the viruses and their replication. In: Fields virology, 5th edn. Wolters kluwer/Lippincott Williams & Wilkins, Philadelphia, pp 1101–1152Google Scholar
  41. 41.
    Lobigs M (1993) Flavivirus premembrane protein cleavage and spike heterodimer secretion require the function of the viral proteinase NS3. Proc Natl Acad Sci U S A 90:6218–6222CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lu G, Gong P (2013) Crystal Structure of the full-length Japanese encephalitis virus NS5 reveals a conserved methyltransferase-polymerase interface. PLoS Pathog 9:e1003549CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Luo D, Wei N, Doan DN et al (2010) Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications. J Biol Chem 285:18817–18827CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Luo D, Xu T, Hunke C et al (2008) Crystal structure of the NS3 protease-helicase from dengue virus. J Virol 82:173–183CrossRefPubMedGoogle Scholar
  45. 45.
    Mackenzie JM, Khromykh AA, Jones MK et al (1998) Subcellular localization and some biochemical properties of the flavivirus Kunjin nonstructural proteins NS2A and NS4A. Virology 245:203–215CrossRefPubMedGoogle Scholar
  46. 46.
    Mairiang D, Zhang H, Sodja A et al (2013) Identification of new protein interactions between dengue fever virus and its hosts, human and mosquito. PLoS One 8:e53535CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Malet H, Egloff MP, Selisko B et al (2007) Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 282:10678–10689CrossRefPubMedGoogle Scholar
  48. 48.
    Marfori M, Lonhienne TG, Forwood JK et al (2012) Structural basis of high-affinity nuclear localization signal interactions with importin-alpha. Traffic 13:532–548CrossRefPubMedGoogle Scholar
  49. 49.
    Mazzon M, Jones M, Davidson A et al (2009) Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. J Infect Dis 200:1261–1270CrossRefPubMedGoogle Scholar
  50. 50.
    Medin CL, Fitzgerald KA, Rothman AL (2005) Dengue virus nonstructural protein NS5 induces interleukin-8 transcription and secretion. J Virol 79:11053–11061CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Moreland NJ, Tay MY, Lim E et al (2012) Monoclonal antibodies against dengue NS2B and NS3 proteins for the study of protein interactions in the flaviviral replication complex. J Virol Methods 179:97–103CrossRefPubMedGoogle Scholar
  52. 52.
    Morrison J, Laurent-Rolle M, Maestre AM et al (2013) Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog 9:e1003265CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Muller DA, Landsberg MJ, Bletchly C et al (2012) Structure of the dengue virus glycoprotein non-structural protein 1 by electron microscopy and single-particle analysis. J Gen Virol 93:771–779CrossRefPubMedGoogle Scholar
  54. 54.
    Muller DA, Young PR (2013) The flavivirus NS1 protein: molecular and structural biology, immunology, role in pathogenesis and application as a diagnostic biomarker. Antivir Res 98:192–208CrossRefPubMedGoogle Scholar
  55. 55.
    Noble CG, Chen YL, Dong H et al (2010) Strategies for development of Dengue virus inhibitors. Antivir Res 85:450–462CrossRefPubMedGoogle Scholar
  56. 56.
    Noble CG, Seh CC, Chao AT et al (2012) Ligand-bound structures of the dengue virus protease reveal the active conformation. J Virol 86:438–446CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Phong WY, Moreland NJ, Lim SP et al (2011) Dengue protease activity: the structural integrity and interaction of NS2B with NS3 protease and its potential as a drug target. Biosci Rep 31:399–409CrossRefPubMedGoogle Scholar
  58. 58.
    Potisopon S, Priet S, Collet A et al (2014) The methyltransferase domain of dengue virus protein NS5 ensures efficient RNA synthesis initiation and elongation by the polymerase domain. Nucleic Acids Res 42:11642–11656CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Preugschat F, Strauss JH (1991) Processing of nonstructural proteins NS4A and NS4B of dengue 2 virus in vitro and in vivo. Virology 185:689–697CrossRefPubMedGoogle Scholar
  60. 60.
    Preugschat F, Yao CW, Strauss JH (1990) In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. J Virol 64:4364–4374PubMedPubMedCentralGoogle Scholar
  61. 61.
    Pryor MJ, Rawlinson SM, Butcher RE et al (2007) Nuclear localization of dengue virus nonstructural protein 5 through its importin alpha/beta-recognized nuclear localization sequences is integral to viral infection. Traffic 8:795–807CrossRefPubMedGoogle Scholar
  62. 62.
    Rawlinson SM, Pryor MJ, Wright PJ et al (2009) CRM1-mediated nuclear export of dengue virus RNA polymerase NS5 modulates interleukin-8 induction and virus production. J Biol Chem 284:15589–15597CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Selisko B, Peyrane FF, Canard B et al (2010) Biochemical characterization of the (nucleoside-2′O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides (7Me)GpppAC(n) and GpppAC(n). J Gen Virol 91:112–121CrossRefPubMedGoogle Scholar
  64. 64.
    Shi PY (2014) Structural biology. Unraveling a flavivirus enigma. Science 343:849–850CrossRefPubMedGoogle Scholar
  65. 65.
    Shiryaev SA, Chernov AV, Aleshin AE et al (2009) NS4A regulates the ATPase activity of the NS3 helicase: a novel cofactor role of the non-structural protein NS4A from West Nile virus. J Gen Virol 90:2081–2085CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Su XC, Ozawa K, Qi R et al (2009) NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile virus NS2B-NS3 protease. PLoS Negl Trop Dis 3:e561CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Tajima S, Takasaki T, Kurane I (2011) Restoration of replication-defective dengue type 1 virus bearing mutations in the N-terminal cytoplasmic portion of NS4A by additional mutations in NS4B. Arch Virol 156:63–69CrossRefPubMedGoogle Scholar
  68. 68.
    Takahashi H, Takahashi C, Moreland NJ et al (2012) Establishment of a robust dengue virus NS3-NS5 binding assay for identification of protein-protein interaction inhibitors. Antivir Res 96:305–314CrossRefPubMedGoogle Scholar
  69. 69.
    Tay MY, Fraser JE, Chan WK et al (2013) Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antivir Res 99:301–306CrossRefPubMedGoogle Scholar
  70. 70.
    Tay MY, Saw WG, Zhao Y et al (2014) The C-terminal 50 amino acid residues of Dengue NS3 protein are important for NS3-NS5 interaction and viral replication. J Biol Chem 290:2379–2394CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tay MY, Smith K, Ng IH et al (2016) The C-terminal 18 amino acid region of Dengue virus NS5 regulates its subcellular localization and contains a conserved arginine residue essential for infectious virus production. PLoS Pathog 12:e1005886CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Tomassini JE, Boots E, Gan L et al (2003) An in vitro Flaviviridae replicase system capable of authentic RNA replication. Virology 313:274–285CrossRefPubMedGoogle Scholar
  73. 73.
    Uchil PD, Satchidanandam V (2003) Architecture of the flaviviral replication complex. Protease, nuclease, and detergents reveal encasement within double-layered membrane compartments. J Biol Chem 278:24388–24398CrossRefPubMedGoogle Scholar
  74. 74.
    Umareddy I, Chao A, Sampath A et al (2006) Dengue virus NS4B interacts with NS3 and dissociates it from single-stranded RNA. J Gen Virol 87:2605–2614CrossRefPubMedGoogle Scholar
  75. 75.
    Vasudevan SG, Johansson M, Brooks AJ et al (2001) Characterisation of inter- and intra-molecular interactions of the dengue virus RNA dependent RNA polymerase as potential drug targets. Farmaco 56:33–36CrossRefPubMedGoogle Scholar
  76. 76.
    Verdine GL, Hilinski GJ (2012) Stapled peptides for intracellular drug targets. Methods Enzymol 503:3–33CrossRefPubMedGoogle Scholar
  77. 77.
    Wang CC, Huang ZS, Chiang PL et al (2009) Analysis of the nucleoside triphosphatase, RNA triphosphatase, and unwinding activities of the helicase domain of dengue virus NS3 protein. FEBS Lett 583:691–696CrossRefPubMedGoogle Scholar
  78. 78.
    Welsch S, Miller S, Romero-Brey I et al (2009) Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe 5:365–375CrossRefPubMedGoogle Scholar
  79. 79.
    Wengler G (1993) The NS 3 nonstructural protein of flaviviruses contains an RNA triphosphatase activity. Virology 197:265–273CrossRefPubMedGoogle Scholar
  80. 80.
    Xu T, Sampath A, Chao A et al (2005) Structure of the Dengue virus helicase/nucleoside triphosphatase catalytic domain at a resolution of 2.4 A. J Virol 79:10278–10288CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Yap TL, Xu T, Chen YL et al (2007) Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81:4753–4765CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yik JH, Chen R, Pezda AC et al (2004) A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Mol Cell Biol 24:5094–5105CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Yon C, Teramoto T, Mueller N et al (2005) Modulation of the nucleoside triphosphatase/RNA helicase and 5′-RNA triphosphatase activities of Dengue virus type 2 nonstructural protein 3 (NS3) by interaction with NS5, the RNA-dependent RNA polymerase. J Biol Chem 280:27412–27419CrossRefPubMedGoogle Scholar
  84. 84.
    Yu L, Takeda K, Markoff L (2013) Protein-protein interactions among West Nile non-structural proteins and transmembrane complex formation in mammalian cells. Virology 446:365–377CrossRefPubMedGoogle Scholar
  85. 85.
    Yusof R, Clum S, Wetzel M et al (2000) Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275:9963–9969CrossRefPubMedGoogle Scholar
  86. 86.
    Zhang L, Mohan PM, Padmanabhan R (1992) Processing and localization of Dengue virus type 2 polyprotein precursor NS3-NS4A-NS4B-NS5. J Virol 66:7549–7554PubMedPubMedCentralGoogle Scholar
  87. 87.
    Zhang Z, Li Y, Loh YR et al (2016) Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science 354:1597–1600CrossRefPubMedGoogle Scholar
  88. 88.
    Zhao Y, Moreland NJ, Tay MY et al (2014) Identification and molecular characterization of human antibody fragments specific for dengue NS5 protein. Virus Res 179:225–230CrossRefPubMedGoogle Scholar
  89. 89.
    Zhao Y, Soh S, Zheng J et al (2015a) A crystal structure of the dengue virus NS5 protein reveals a novel inter-domain interface essential for protein flexibility and virus replication. PLoS Pathog 11:e1004682CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhao Y, Soh TS, Lim SP et al (2015b) Molecular basis for specific viral RNA recognition and 2′-O-ribose methylation by the dengue virus nonstructural protein 5 (NS5). Proc Natl Acad Sci U S A 112:14834–14839CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Zhou Y, Ray D, Zhao Y et al (2007) Structure and function of flavivirus NS5 methyltransferase. J Virol 81:3891–3903CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Zou G, Chen YL, Dong H et al (2011) Functional analysis of two cavities in flavivirus NS5 polymerase. J Biol Chem 286:14362–14372CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Zou J, Lee LT, Wang QY et al (2015a) Mapping the interactions between the NS4B and NS3 proteins of dengue virus. J Virol 89:3471–3483CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zou J, Xie X, Lee le T et al (2014) Dimerization of flavivirus NS4B protein. J Virol 88:3379–3391CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Zou J, Xie X, Wang QY et al (2015b) Characterization of dengue virus NS4A and NS4B protein interaction. J Virol 89:3455–3470CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Zust R, Dong H, Li XF et al (2013) Rational design of a live attenuated dengue vaccine: 2′-o-methyltransferase mutants are highly attenuated and immunogenic in mice and macaques. PLoS Pathog 9:e1003521CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Nanyang Technological University Food Technology Centre (NAFTEC)Nanyang Technological University (NTU)SingaporeSingapore
  2. 2.Emerging Infectious Diseases ProgramDuke-NUS Medical School SingaporeSingaporeSingapore

Personalised recommendations