Advertisement

The Structure of the Zika Virus Protease, NS2B/NS3pro

  • Rolf Hilgenfeld
  • Jian Lei
  • Linlin Zhang
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1062)

Abstract

In this chapter, we first briefly review the history of Zika virus (ZIKV) over the past 70 years since its discovery. We then focus on the ZIKV NS2B/NS3 protease, a major potential target for anti-ZIKV therapeutics. We describe the structure of the complex between Zika virus NS2B-NS3 protease and a peptide boronic-acid inhibitor that we determined in early 2016. We then review other structural studies on the Zika virus protease, which have been published in the past few months. Three different types of construct for the protease have been investigated by X-ray crystallography and NMR spectroscopy: the traditional “linked” construct comprising the NS2B cofactor, a Gly4SerGly4 linker, and the NS3pro chain; a construct where the linker has been replaced by Lys-Thr-Gly-Lys-Arg, which leads to autocleavage; and the bimolecular “unlinked” protease consisting of the NS2B cofactor segment and NS3pro. In complex with an inhibitor, the protease adopts a closed, “active” conformation with the NS2B chain wrapped around the NS3pro and contributing to the S2 pocket. In the ligand-free state, the Gly4SerGly4-linked enzyme adopts an open or relaxed conformation, with the C-terminal half of the NS2B cofactor highly flexible and disordered. Very surprisingly, however, the “unlinked”, bimolecular protease has been reported to adopt the closed conformation in the crystal, even though, apparently, no peptide was bound to the substrate-binding site. The Gly4SerGly4-linked enzyme has been used successfully in drug discovery efforts.

Keywords

Zika virus history Zika virus disease congenital Zika syndrome Zika virus protease boronic-acid inhibitor Zika virus protease dimerization X-ray crystallography NMR spectroscopy anti-Zika virus drug discovery 

References

  1. 1.
    Aliota MT, Bassit L, Bradrick SS, Cox B, Garcia-Blanco MA, Gavegnano C, Friedrich TC, Golos TG, Griffin DE, Haddow AD, Kallas EG, Kitron U, Lecuit M, Magnani DM, Marrs C, Mercer N, McSweegan E, Ng LFP, O’Connor DH, Osorio JE, Ribeiro GS, Ricciardi M, Rossi SL, Saade G, Schinazi RF, Schott-Lerner GO, Shan C, Shi PY, Watkins DI, Vasilakis N, Weaver SC (2017) Zika in the Americas, year 2: what have we learned? What gaps remain? A report from the Global Virus Network. Antivir Res 144:223–246CrossRefGoogle Scholar
  2. 2.
    Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D (2017) An update on Zika-virus infection. Lancet 390:2099–2109CrossRefGoogle Scholar
  3. 3.
    Brecher M, Li Z, Liu B, Zhang J, Koetzner CA, Alifarag A, Jones SA, Lin Q, Kramer LD, Li H (2017) A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathog 13:e1006411CrossRefGoogle Scholar
  4. 4.
    Cao-Lormeau VM, Blake A, Mons S, Lastere S, Roche C, Vanhomwegen J, Dub T, Baudouin L, Teissier A, Larre P, Vial AL, Decam C, Choumet V, Halstead SK, Willison HJ, Musset L, Manuguerra JC, Despres P, Fournier E, Mallet HP, Musso D, Fontanet A, Neil J, Ghawche F (2016) Guillain-Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387:1531–1539CrossRefGoogle Scholar
  5. 5.
    Cardoso CW, Paploski IA, Kikuti M, Rodrigues MS, Silva MM, Campos GS, Sardi SI, Kitron U, Reis MG, Ribeiro GS (2015) Outbreak of exanthematous illness associated with Zika, Chikungunya, and Dengue viruses, Salvador, Brazil. Emerg Infect Dis 21:2274–2276CrossRefGoogle Scholar
  6. 6.
    Cauchemez S, Besnard M, Bompard P, Dub T, Guillemette-Artur P, Eyrolle-Guignot D, Salje H, van Kerkhove MD, Abadie V, Garel C, Fontanet A, Mallet HP (2016) Association between Zika virus and microcephaly in French Polynesia, 2013–15: a retrospective study. Lancet 387:2125–2132CrossRefGoogle Scholar
  7. 7.
    Chan JF, Chik KK, Yuan S, Yip CC, Zhu Z, Tee KM, Tsang JO, Chan CC, Poon VK, Lu G, Zhang AJ, Lai KK, Chan KH, Kao RY, Yuen KY (2017) Novel antiviral activity and mechanism of bromocriptine as a Zika virus NS2B-NS3 protease inhibitor. Antivir Res 141:29–37CrossRefGoogle Scholar
  8. 8.
    Chen X, Yang K, Wu C, Chen C, Hu C, Buzovetsky O, Wang Z, Ji X, Xiong Y, Yang H (2016) Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease. Cell Res 26:1260–1263CrossRefGoogle Scholar
  9. 9.
    Clum S, Ebner KE, Padmanabhan R (1997) Cotranslational membrane insertion of the serine proteinase precursor NS2B-NS3Pro of dengue virus type 2 is required for efficient in vitro processing and is mediated through the hydrophobic regions of NS2B. J Biol Chem 272:30715–30723CrossRefGoogle Scholar
  10. 10.
    Dick GW (1952) Zika virus. II. Pathogenicity and physical properties. Trans R Soc Trop Med Hyg 46:521–534CrossRefGoogle Scholar
  11. 11.
    Dick GWA, Kitchen SF, Haddow AJ (1952) Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 46:509–520CrossRefGoogle Scholar
  12. 12.
    Fagbami A (1977) Epidemiological investigations on arbovirus infections at Igbo-Ora, Nigeria. Trop Geogr Med 29:187–191PubMedGoogle Scholar
  13. 13.
    Fagbami AH (1979) Zika virus infections in Nigeria: virological and seroepidemiological investigations in Oyo state. J Hyg (Lond) 83:213–219CrossRefGoogle Scholar
  14. 14.
    Gruba N, Rodriguez Martinez JI, Grzywa R, Wysocka M, Skorenski M, Burmistrz M, Lecka M, Lesner A, Sienczyk M, Pyrc K (2016) Substrate profiling of Zika virus NS2B-NS3 protease. FEBS Lett 590:3459–3468CrossRefGoogle Scholar
  15. 15.
    Haddow AJ, Williams MC, Woodall JP, Simpson DI, Goma LK (1964) Twelve isolations of Zika virus from Aedes (Stegomyia) africanus (Theobald) taken in and above a Uganda forest. Bull World Health Organ 31:57–69PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hammamy MZ, Haase C, Hammami M, Hilgenfeld R, Steinmetzer T (2013) Development and characterization of new peptidomimetic inhibitors of the West Nile virus NS2B-NS3 protease. ChemMedChem 8:231–241CrossRefGoogle Scholar
  17. 17.
    Hayes EB (2009) Zika virus outside Africa. Emerg Infect Dis 15:1347–1350CrossRefGoogle Scholar
  18. 18.
    Heymann DL, Hodgson A, Sall AA, Freedman DO, Staples JE, Althabe F, Baruah K, Mahmud G, Kandun N, Vasconcelos PF, Bino S, Menon KU (2016) Zika virus and microcephaly: why is this situation a PHEIC? Lancet 387:719–721CrossRefGoogle Scholar
  19. 19.
    Kokernot RH, Smithburn KC, Gandara AF, Mc’Intosh BM, Heymann CS (1960) Neutralization tests with sera of inhabitants of Mozambique against certain virus strains isolated in Africa and transmitted by arthropods. Anais Inst Med Trop 17:201–230. (in Portuguese) Google Scholar
  20. 20.
    Kuiper BD, Slater K, Spellmon N, Holcomb J, Medapureddy P, Muzzarelli KM, Yang Z, Ovadia R, Amblard F, Kovari IA, Schinazi RF, Kovari LC (2017) Increased activity of unlinked Zika virus NS2B/NS3 protease compared to linked Zika virus protease. Biochem Biophys Res Commun 492:668–673CrossRefGoogle Scholar
  21. 21.
    Lee H, Ren J, Nocadello S, Rice AJ, Ojeda I, Light S, Minasov G, Vargas J, Nagarathnam D, Anderson WF, Johnson ME (2017) Identification of novel small molecule inhibitors against NS2B/NS3 serine protease from Zika virus. Antivir Res 139:49–58CrossRefGoogle Scholar
  22. 22.
    Lei J, Hansen G, Nitsche C, Klein CD, Zhang L, Hilgenfeld R (2016) Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 353:503–505CrossRefGoogle Scholar
  23. 23.
    Leung D, Schroder K, White H, Fang NX, Stoermer MJ, Abbenante G, Martin JL, Young PR, Fairlie DP (2001) Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J Biol Chem 276:45762–45771CrossRefGoogle Scholar
  24. 24.
    Li J, Lim SP, Beer D, Patel V, Wen D, Tumanut C, Tully DC, Williams JA, Jiricek J, Priestle JP, Harris JL, Vasudevan SG (2005) Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem 280:28766–28774CrossRefGoogle Scholar
  25. 25.
    Li Y, Phoo WW, Loh YR, Zhang Z, Ng EY, Wang W, Keller TH, Luo D, Kang C (2017) Structural characterization of the linked NS2B-NS3 protease of Zika virus. FEBS Lett 591:2338–2347CrossRefGoogle Scholar
  26. 26.
    Li Y, Zhang Z, Phoo WW, Loh YR, Wang W, Liu S, Chen MW, Hung AW, Keller TH, Luo D, Kang C (2017) Structural dynamics of Zika virus NS2B-NS3 protease binding to dipeptide inhibitors. Structure 25:1242–1250CrossRefGoogle Scholar
  27. 27.
    Li Z, Brecher M, Deng YQ, Zhang J, Sakamuru S, Liu B, Huang R, Koetzner CA, Allen CA, Jones SA, Chen H, Zhang NN, Tian M, Gao F, Lin Q, Banavali N, Zhou J, Boles N, Xia M, Kramer LD, Qin CF, Li H (2017) Existing drugs as broad-spectrum and potent inhibitors for Zika virus by targeting NS2B-NS3 interaction. Cell Res 27:1046–1064CrossRefGoogle Scholar
  28. 28.
    Lim HJ, Nguyen TT, Kim NM, Park JS, Jang TS, Kim D (2017) Inhibitory effect of flavonoids against NS2B-NS3 protease of Zika virus and their structure activity relationship. Biotechnol Lett 39:415–421CrossRefGoogle Scholar
  29. 29.
    Luo D, Wei N, Doan DN, Paradkar PN, Chong Y, Davidson AD, Kotaka M, Lescar J, Vasudevan SG (2010) Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications. J Biol Chem 285:18817–18827CrossRefGoogle Scholar
  30. 30.
    Ma W, Li S, Ma S, Jia L, Zhang F, Zhang Y, Zhang J, Wong G, Zhang S, Lu X, Liu M, Yan J, Li W, Qin C, Han D, Qin C, Wang N, Li X, Gao GF (2016) Zika virus causes testis damage and leads to male infertility in mice. Cell 167:1511–1524CrossRefGoogle Scholar
  31. 31.
    Mahawaththa MC, Pearce BJG, Szabo M, Graham B, Klein CD, Nitsche C, Otting G (2017) Solution conformations of a linked construct of the Zika virus NS2B-NS3 protease. Antivir Res 142:141–147CrossRefGoogle Scholar
  32. 32.
    Marchette NJ, Garcia R, Rudnick A (1969) Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. Am J Trop Med Hyg 18:411–415CrossRefGoogle Scholar
  33. 33.
    Moore DL, Causey OR, Carey DE, Reddy S, Cooke AR, Akinkugbe FM, David-West TS, Kemp GE (1975) Arthropod-borne viral infections of man in Nigeria, 1964–1970. Ann Trop Med Parasitol 69:49–64CrossRefGoogle Scholar
  34. 34.
    Musso D (2015) Zika virus transmission from French polynesia to Brazil. Emerg Infect Dis 21:1887CrossRefGoogle Scholar
  35. 35.
    Musso D, Nilles EJ, Cao-Lormeau VM (2014) Rapid spread of emerging Zika virus in the Pacific area. Clin Microbiol Infect 20:O595–O596CrossRefGoogle Scholar
  36. 36.
    Musso D, Roche C, Robin E, Nhan T, Teissier A, Cao-Lormeau VM (2015) Potential sexual transmission of Zika virus. Emerg Infect Dis 21:359–361CrossRefGoogle Scholar
  37. 37.
    Nitsche C, Zhang L, Weigel LF, Schilz J, Graf D, Bartenschlager R, Hilgenfeld R, Klein CD (2017) Peptide-boronic acid inhibitors of flaviviral proteases: Medicinal chemistry and structural biology. J Med Chem 60:511–516CrossRefGoogle Scholar
  38. 38.
    Olson JG, Ksiazek TG, Suhandiman T (1981) Zika virus, a cause of fever in Central Java, Indonesia. Trans R Soc Trop Med Hyg 75:389–393CrossRefGoogle Scholar
  39. 39.
    Olson JG, Ksiazek TG, Gubler DJ, Lubis SI, Simanjuntak G, Lee VH, Nalim S, Juslis K, See R (1983) A survey for arboviral antibodies in sera of humans and animals in Lombok, Republic of Indonesia. Ann Trop Med Parasitol 77:131–137CrossRefGoogle Scholar
  40. 40.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  41. 41.
    Phoo WW, Li Y, Zhang Z, Lee MY, Loh YR, Tan YB, Ng EY, Lescar J, Kang C, Luo D (2016) Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat Commun 7:13410CrossRefGoogle Scholar
  42. 42.
    Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR (2016). Zika virus and birth defects − reviewing the evidence for causality. N Engl J Med 374:1981–1987CrossRefGoogle Scholar
  43. 43.
    Rice CM, Lenches EM, Eddy SR, Shin SJ, Sheets RL, Strauss JH (1985) Nucleotide sequence of yellow fever virus, implications for flavivirus gene expression and evolution. Science 229:726–733CrossRefGoogle Scholar
  44. 44.
    Roth A, Mercier A, Lepers C, Hoy D, Duituturaga S, Benyon E, Guillaumot L, Souares Y (2014) Concurrent outbreaks of dengue, chikungunya and Zika virus infections – an unprecedented epidemic wave of mosquito-borne viruses in the Pacific 2012–2014. Euro Surveill 19:pii: 20929CrossRefGoogle Scholar
  45. 45.
    Roy A, Lim L, Srivastava S, Lu Y, Song J (2017) Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants. PLoS One 12:e0180632CrossRefGoogle Scholar
  46. 46.
    Rut W, Zhang L, Kasperkiewicz P, Poreba M, Hilgenfeld R, Drag M (2017) Extended substrate specificity and first potent irreversible inhibitor/ activity-based probe design for Zika virus NS2B-NS3 protease. Antiviral Res 139:88–94CrossRefGoogle Scholar
  47. 47.
    Sahoo M, Jena L, Daf S, Kumar S (2016) Virtual screening for potential inhibitors of NS3 protein of Zika virus. Genomics Inform 14:104–111CrossRefGoogle Scholar
  48. 48.
    Shiryaev SA, Farhy C, Pinto A, Huang CT, Simonetti N, Ngono AE, Dewing A, Shresta S, Pinkerton AB, Cieplak P, Strongin AY, Terskikh AV (2017) Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antivir Res 143:218–229CrossRefGoogle Scholar
  49. 49.
    Simpson DI (1964) Zika virus in man. Trans R Soc Trop Med Hyg 58:335–338CrossRefGoogle Scholar
  50. 50.
    Singapore Zika Study Group (2017) Outbreak of Zika virus infection in Singapore: an epidemiological, entomological, virological, and clinical analysis. Lancet Infect Dis 17:813–821CrossRefGoogle Scholar
  51. 51.
    Smithburn KC (1954) Neutralizing antibodies against arthropod-borne viruses in the sera of long-time residents of Malaya and Borneo. Am J Hyg 59:157–163PubMedGoogle Scholar
  52. 52.
    Tian H, Ji X, Yang X, Xie W, Yang K, Chen C, Wu C, Chi H, Mu Z, Wang Z, Yang H (2016) The crystal structure of Zika virus helicase: basis for antiviral drug design. Protein Cell 7:450–454CrossRefGoogle Scholar
  53. 53.
    Tognarelli J, Ulloa S, Villagra E, Lagos J, Aguayo C, Fasce R, Parra B, Mora J, Becerra N, Lagos N, Vera L, Olivares B, Vilches M, Fernández J (2016) A report on the outbreak of Zika virus on Easter Island, South Pacific, 2014. Arch Virol 151:665–668CrossRefGoogle Scholar
  54. 54.
    Weinert T, Olieric V, Waltersperger S, Panepucci E, Chen L, Zhang H, Zhou D, Rose J, Ebihara A, Kuramitsu S, Li D, Howe N, Schnapp G, Pautsch A, Bargsten K, Prota AE, Surana P, Kottur J, Nair DT, Basilico F, Cecatiello V, Pasqualato S, Boland A, Weichenrieder O, Wang BC, Steinmetz MO, Caffrey M, Wang M (2015) Fast native-SAD phasing for routine macromolecular structure determination. Nat Methods 12:131–133CrossRefGoogle Scholar
  55. 55.
    Wengler G, Czaya G, Farber PM, Hegemann JH (1991) In vitro synthesis of West Nile virus proteins indicates that the amino-terminal segment of the NS3 protein contains the active centre of the protease which cleaves the viral polyprotein after multiple basic amino acids. J Gen Virol 72:851–858CrossRefGoogle Scholar
  56. 56.
    Yuan S, Chan JF, den-Haan H, Chik KK, Zhang AJ, Chan CC, Poon VK, Yip CC, Mak WW, Zhu Z, Zou Z, Tee KM, Cai JP, Chan KH, de la Pena J, Perez-Sanchez H, Ceron-Carrasco JP, Yuen KY (2017) Structure-based discovery of clinically approved drugs as Zika virus NS2B-NS3 protease inhibitors that potently inhibit Zika virus infection in vitro and in vivo. Antivir Res 145:33–43CrossRefGoogle Scholar
  57. 57.
    Zhang Z, Li Y, Loh YR, Phoo WW, Hung AW, Kang C, Luo D (2016) Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science 354:1597–1600CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Biochemistry, Center for Structural and Cell Biology in MedicineUniversity of LübeckLübeckGermany
  2. 2.German Center for Infection Research (DZIF), Hamburg – Lübeck – Borstel – Riems SiteUniversity of LübeckLübeckGermany

Personalised recommendations