Skip to main content

Synthetic Probes, Their Applications and Designing

  • Chapter
  • First Online:
Synthetic Biology

Abstract

Microbial genomics is becoming an emerging field of science that analyses and compares complete genome of microorganisms or zillions of genes, in a concomitant fashion. Cost-effective and high-throughput next-generation sequencing (NGS) has made possible to explore highly diverse microbial community for metagenomics, medical diagnostics and clinical microbiological research. The probes, which act like biosensors, are commonly exploited for therapeutics, phylogenetic analysis and common medical diagnostic techniques. Synthetic nucleic acid analogues are replacing nucleic acids because of greater stability and efficiency in in vivo applications and molecular biology research. These artificial nucleic acid analogues like LNAs (locked nucleic acids) and PNAs (peptide nucleic acids) are being exploited in research and diagnostics, and continuous efforts are being made to engineer them further for their maximal potential. A number of tools are available for probe designing for various applications. This chapter focuses on the natural and artificial nucleic acid probes, the differences in the chemistry of these probes, their advantages, limitations and synthetic applications along with some web-based tools for probe designing and quality check.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aquino De Muro M. Probe design, production, and applications

    Google Scholar 

  • Benner SA et al (1998) Redesigning nucleic acids. Pure Appl Chem 70:263–266

    Article  CAS  Google Scholar 

  • Briones C, Moreno M (2012) Applications of peptide nucleic acids (PNAs) and locked nucleic acids (LNAs) in biosensor development. Anal Bioanal Chem 402:3071–3089

    Article  CAS  Google Scholar 

  • Campbell MA, Wengel J (2011) Locked vs. unlocked nucleic acids (LNA vs. UNA): contrasting structures work towards common therapeutic goals. Chem Soc Rev 40:5680

    Article  CAS  Google Scholar 

  • Caskey CT (1987) Disease diagnosis by recombinant DNA methods. Science 236:1223–1229

    Article  CAS  Google Scholar 

  • Castoldi M et al (2006) A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 12:913–920

    Article  CAS  Google Scholar 

  • Cerqueira L et al (2008) DNA mimics for the rapid identification of microorganisms by fluorescence in situ hybridization (FISH). Int J Mol Sci 9:1944–1960

    Article  CAS  Google Scholar 

  • Choi J, Kim C, Park H (2009) Peptide nucleic acid-based array for detecting and genotyping human papillomaviruses. J Clin Microbiol 47:1785–1790

    Article  CAS  Google Scholar 

  • Choi J-J, Jang M, Kim J, Park H (2010) Highly sensitive PNA array platform technology for single nucleotide mismatch discrimination. J Microbiol Biotechnol 20:287–293

    Article  CAS  Google Scholar 

  • Chou H-H (2010) Shared probe design and existing microarray reanalysis using Picky. BMC Bioinforma 11:196

    Article  Google Scholar 

  • Chou H-H, Hsia A-P, Mooney DL, Schnable PS (2004) Picky: oligo microarray design for large genomes. Bioinformatics 20:2893–2902

    Article  CAS  Google Scholar 

  • Demidov V, Frank-Kamenetskii MD, Egholm M, Buchardt O, Nielsen PE (1993) Sequence selective double strand DNA cleavage by peptide nucleic acid (PNA) targeting using nuclease S1. Nucleic Acids Res 21:2103–2107

    Article  CAS  Google Scholar 

  • Egholm M, Buchardt O, Nielsen PE, Berg RH (1992) Peptide nucleic acids (PNA). Oligonucleotide analogs with an achiral peptide backbone. J Am Chem Soc 114:1895–1897

    Article  CAS  Google Scholar 

  • Electrochemical nucleic acid – based biosensors: Concepts, terms, and methodology (IUPAC Technical Report) * – Semantic Scholar. Available at: https://www.semanticscholar.org/paper/Electrochemical-nucleic-acid%2D%2D-based-biosensors-%3A-Labuda-Brett/3861ec38a788e3b20cf8a3c4c1de73284fcf74df. Accessed 23 Feb 2018

  • Fang S, Lee HJ, Wark AW, Corn RM (2006) Attomole microarray detection of microRNAs by nanoparticle-amplified SPR imaging measurements of surface polyadenylation reactions. J Am Chem Soc 128:14044–14046

    Article  CAS  Google Scholar 

  • Forrest GN et al (2006) Impact of rapid in situ hybridization testing on coagulase-negative staphylococci positive blood cultures. J Antimicrob Chemother 58:154–158

    Article  CAS  Google Scholar 

  • Geyer CR, Battersby TR, Benner SA (2003) Nucleobase pairing in expanded Watson-Crick-like genetic information systems. Structure 11:1485–1498

    Article  CAS  Google Scholar 

  • Gill P, Jeffreys AJ, Werrett DJ (1985) Forensic application of DNA ‘fingerprints’. Nature 318:577–579

    Article  CAS  Google Scholar 

  • González V et al (2004) Rapid diagnosis of Staphylococcus aureus bacteremia using S. aureus PNA FISH. Eur J Clin Microbiol Infect Dis 23:396–398

    Article  Google Scholar 

  • Henry VJ, Bandrowski AE, Pepin A-S, Gonzalez BJ, Desfeux A (2014) OMICtools: an informative directory for multi-omic data analysis. Database (Oxford) 2014

    Google Scholar 

  • Jourdren L et al (2010) Teolenn: an efficient and customizable workflow to design high-quality probes for microarray experiments. Nucleic Acids Res 38:e117–e117

    Article  Google Scholar 

  • Koshkin AA, Wengel J (1998) Synthesis of novel 2′,3′-linked bicyclic thymine ribonucleosides. J Organomet Chem 63:2778–2781

    Article  CAS  Google Scholar 

  • Landegren U, Kaiser R, Caskey CT, Hood L (1988) DNA diagnostics – molecular techniques and automation. Science 242:229–237

    Article  CAS  Google Scholar 

  • Lederberg J (2000) Infectious history. Science 288:287–293

    Article  CAS  Google Scholar 

  • Nielsen PE (1999) Applications of peptide nucleic acids. Curr Opin Biotechnol 10:71–75

    Article  CAS  Google Scholar 

  • Nielsen PE, Egholm M, Berg RH, Buchardt O (1993) Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res 21:197–200

    Article  CAS  Google Scholar 

  • Nielsen KE, Singh SK, Wengel J, Jacobsen JP (2000) Solution structure of an LNA hybridized to DNA: NMR study of the d(CTLGCTLTLCTLGC):d(GCAGAAGCAG) duplex containing four locked nucleotides. https://doi.org/10.1021/BC990121S

    Article  CAS  Google Scholar 

  • Obika S et al (1997) Synthesis of 2′-O,4′-C-methyleneuridine and -cytidine. Novel bicyclic nucleosides having a fixed C3, -endo sugar puckering. Tetrahedron Lett 38:8735–8738

    Article  CAS  Google Scholar 

  • Orum H (2000) PCR clamping. Curr Issues Mol Biol 2:27–30

    CAS  PubMed  Google Scholar 

  • Orum H et al (1993) Single base pair mutation analysis by PNA directed PCR clamping. Nucleic Acids Res 21:5332–5336

    Article  CAS  Google Scholar 

  • Relman DA (2011) Microbial genomics and infectious diseases. N Engl J Med 365:347–357

    Article  CAS  Google Scholar 

  • Schneider KC, Benner SA (1990) Oligonucleotides containing flexible nucleoside analogs. J Am Chem Soc 112:453–455

    Article  CAS  Google Scholar 

  • Singer A, Tang YW (2015) Artificial nucleic acid probes and their applications in clinical microbiology. Methods Microbiol 42:2–613 .(Elsevier Ltd.

    Google Scholar 

  • Song HJ et al (2010) Comparison of the performance of the PANArray™ HPV test and DNA chip test for genotyping of human papillomavirus in cervical swabs. Biochip J 4:167–172

    Article  CAS  Google Scholar 

  • Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

    Article  CAS  Google Scholar 

  • Stenberg J, Nilsson M, Landegren U (2005) ProbeMaker: an extensible framework for design of sets of oligonucleotide probes. BMC Bioinforma 6:229

    Article  Google Scholar 

  • Venkateswaran N, Venkateswaran KS (1991) Nucleic acid probes in microbiology. Def Sci J 41:335–356

    Article  CAS  Google Scholar 

  • Wernersson R (2009) Probe design for expression arrays using OligoWiz. Methods Mol Biol (Clifton, NJ) 529:23–36

    Article  CAS  Google Scholar 

  • Wernersson R, Nielsen HB (2005) OligoWiz 2.0 – integrating sequence feature annotation into the design of microarray probes. Nucleic Acids Res 33:W611–W615

    Article  CAS  Google Scholar 

  • Yilmaz LS, Parnerkar S, Noguera DR (2011) mathFISH, a web tool that uses thermodynamics-based mathematical models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Appl Environ Microbiol 77:1118–1122

    Article  CAS  Google Scholar 

Important Links (for Tools)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zahra, S., Singh, A., Kumar, S. (2018). Synthetic Probes, Their Applications and Designing. In: Singh, S. (eds) Synthetic Biology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8693-9_11

Download citation

Publish with us

Policies and ethics