Skip to main content

Improved Ring-Based Photonic Crystal Raman Amplifier Using Optofluidic Materials

  • Conference paper
  • First Online:
Fundamental Research in Electrical Engineering

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 480))

  • 1236 Accesses

Abstract

Ring-based photonic crystal (PhC) structure for Raman amplifier is investigating in this article. Then using optofluidic materials in the holes on the sides of the signal path, pump and signal group velocity reducing that cause Raman gain increase. In order to achieve bigger Raman gain, we use two-ring structure. The time evolution and propagation of picosecond signal pulses and dispersion inside the device are analyzed and Raman gain, Raman bandwidth and bit rate are studied in one-ring and two-ring structures. Maxwell equations are solved by finite difference time domain (FDTD) method and considering the optical nonlinear parameters of two photon absorption, free carrier absorption, Kerr effect and self-phase modulation in PhC structure. From a structure with a length of 100 μm, Raman gain of 19.01 dB and bit rate of 0.6493 × 1012 pulse/sec are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rong H et al (2007) Monolithic integrated ring resonator Raman silicon laser and amplifier. Proc. SPIE 6485:1–8

    Google Scholar 

  2. Jalali B, Raghunathan V, Shori R (2006) Prospects of silicon Mid-IR raman lasers. IEEE J Sel Top Quantum Electron 12:1618–1627

    Article  Google Scholar 

  3. Claps R et al (2004) Influence of nonlinear absorption on Raman amplification in silicon waveguides. Opt Express 12:2774–2780

    Article  Google Scholar 

  4. Liu A, Rong H, Paniccia M (2004) Net optical gain in a low loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt Express 12:4261–4268

    Article  Google Scholar 

  5. Rukhlenko ID, Premaratne M (2010) Spectral compression and group delay of optical pulses in silicon Raman amplifiers. Opt Lett 35:3138–3140

    Article  Google Scholar 

  6. Kroeger F et al (2010) Saturation of the Raman amplification by self-phase modulation in silicon nanowaveguides. Appl Phys Lett 96:241102-1–241102-3

    Article  Google Scholar 

  7. Claps R et al (2005) Raman amplification and lasing in SiGewaveguides. Opt Express 13:2459–2466

    Article  Google Scholar 

  8. Seidfaraji A, Ahmadi V (2012) Enhanced Raman amplification by photonic crystal based waveguide structure. ICTON 1–4

    Google Scholar 

  9. Seyedfaraji A, Ahmadi V (2013) Improvement of Raman amplifier bandwidth by means of slow light in photonic crystal based waveguide structure. Opt Quant Electron 45:1237–1248

    Article  Google Scholar 

  10. Seyedfaraji A, Ahmadi V (2010) Enhanced Raman amplification by hybrid photonic crystals. ICTON 1–4

    Google Scholar 

  11. Yi-Hua H, Iwamoto S, Arakawa Y (2013) Design of slow-light grating waveguides for silicon Raman amplifier. CLEO-PR 1–2

    Google Scholar 

  12. Krause M, Renner H, Brinkmeyer E (2010) Silicon Raman amplifiers with ring-resonator-enhanced pump power. IEEE J Sel Top Quant 16:216–225

    Article  Google Scholar 

  13. Rukhlenko ID et al (2010) Optimization of Raman amplification in silicon waveguide with finite facet reflectivities. IEEE J Sel Top Quant 16:226–233

    Article  Google Scholar 

  14. Monat C et al (2010) Slow light enhanced nonlinear optics in silicon photonic crystal waveguides. IEEE J Sel Top Quantum Electron 16:344–356

    Article  Google Scholar 

  15. Corcoran B (2010) Optical signal processing on a silicon chip at 640 Gb/s using slow-light. Opt Express 18:7770–7781

    Article  Google Scholar 

  16. McMillan JF et al (2006) Enhanced stimulated Raman scattering in slow-light photonic crystal waveguides. Opt Lett 31:1235–1237

    Article  Google Scholar 

  17. Seyedfaraji A, Ahmadi V (2013) New design of ring-based Raman amplifier using optofluidic materials. Opt Eng 59(9):097103-1–097103-6

    Google Scholar 

  18. Seyedfaraji A, Ahmadi V (2016) Enhanced Raman amplification by conventional and hybrid photonic crystal based ring structure. Optical Quantum Electronic 48(190):1–13

    Google Scholar 

  19. Bakhshi S, Moravvej-Farshi MK, Ebnali-Heidari M (2011) Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration. Appl Opt 50:4048–4053

    Article  Google Scholar 

  20. Bakhshi S, Moravvej-Farshi MK, Ebnali-Heidari M (2012) Design of an ultracompact low-power all-optical modulator by means of dispersion engineered slow light regime in a photonic crystal Mach-Zehnder interferometer. Appl Opt 51:2687–2692

    Article  Google Scholar 

  21. Dekker R et al (2007) Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides. J Phys D Appl Phys 40:R249–R271

    Article  Google Scholar 

  22. Keyvaninia S et al (2008) Gain variation of Raman amplifier in silicon micro-ring coupled resonator optical waveguides. Proc SPIE 6998:699818-1–699818-8

    Google Scholar 

  23. Kippenberg, TJA (2004) Nonlinear optics in ultra-high-Q whispering-gallery optical microcavities. PhD thesis, California Institute of Technology

    Google Scholar 

  24. Lin Q, Painter OJ, Agrawal GP (2007) Nonlinear optical phenomena in silicon waveguides: modeling and applications. Opt Express 15:16604–16644

    Article  Google Scholar 

  25. Zheng W et al (2009) Integration of photonic crystal polarization beam splitter and waveguide bend. Opt Express 17:8657–8668

    Article  Google Scholar 

  26. Xing FF et al (2005) Optimization of bandwidth in 60-photonic crystal waveguide bends. Opt Commun 248:179–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amire Seyedfaraji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seyedfaraji, A. (2019). Improved Ring-Based Photonic Crystal Raman Amplifier Using Optofluidic Materials. In: Montaser Kouhsari, S. (eds) Fundamental Research in Electrical Engineering. Lecture Notes in Electrical Engineering, vol 480. Springer, Singapore. https://doi.org/10.1007/978-981-10-8672-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8672-4_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8671-7

  • Online ISBN: 978-981-10-8672-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics