Skip to main content

Sparse Channel Estimation Based on Compressive Sensing with Overcomplete Dictionaries in OFDM Communication Systems

  • Conference paper
  • First Online:
  • 1542 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 828))

Abstract

In this paper, sparse channel estimation in OFDM communication systems is investigated. Particularly, the application of compressive sensing theory into sparse channel estimation is studied. Several existing sparse signal recovery algorithms are compared along with the conventional least-square method. Furthermore, overcomplete dictionaries are considered for sparse representations of the multipath channels. Simulation results show that the oversampled DFT matrices lead to sparser channel coefficients and superior estimation quality when compared to the baseband channel representations, and AS-SaMP provides a better estimation accuracy without requiring excessively higher complexity among the compared recovery algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The support set of a vector \( {\mathbf{x}} \) is defined as the set of indices which correspond to the non-zero elements of \( {\mathbf{x}} \).

  2. 2.

    The elimination of the low-correlated columns using final test is referred to as backtracking which improves the estimation accuracy of CoSaMP [28].

  3. 3.

    The MSE of the sparse approximation is defined as \( {\text{E}}\left[ {\sum\nolimits_{m = 1}^{N} {|H\left( m \right) - \hat{H}_{K} \left( m \right)|^{2} } } \right] \), where \( \hat{H}_{K} \left( m \right) \) is the mth element of sparse approximation using K terms with the corresponding basis model.

  4. 4.

    The recovery MSE is defined as \( {\text{E}}\left[ {\sum\nolimits_{k = 1}^{N} {|H\left( k \right) - \hat{H}\left( k \right)|^{2} } } \right] \). Instead of the number of iterations, we use the running time for complexity comparison because of the different computational complexity per iteration for different algorithms [13].

References

  1. Prasad, R.: OFDM for Wireless Communication Systems. Artech House, Norwood (2004)

    Google Scholar 

  2. Zhou, S., Wang, Z.: OFDM for Underwater Acoustic Communications. Wiley, Hoboken (2014)

    Book  Google Scholar 

  3. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Sig. Process. 41(12), 3397–3415 (1993). https://doi.org/10.1109/78.258082

    Article  MATH  Google Scholar 

  4. Wang, N., Gui, G., Zhang, Z., Zhang, P.: Suboptimal sparse channel estimation for multicarrier underwater acoustic communications. Int. J. Phys. Sci. 6, 5906–5911 (2011)

    Google Scholar 

  5. Bajwa, W.U., Sayeed, A.M., Nowak, R.: Sparse multipath channels: modeling and estimation. In: Proceedings of the 13th IEEE Digital Signal Processing Workshop, Marco Island, FL, pp. 320–325 (2009). https://doi.org/10.1109/dsp.2009.4785942

  6. Hanzo, L., Akhtman, J., Jiang, M., Wang, L.: MIMO-OFDM for LTE, WIFI and WIMAX: Coherent Versus Non-coherent and Cooperative Turbo-Transceivers. John Wiley and IEEE Press (2010). https://doi.org/10.1002/9780470711750

  7. Cotter, S., Rao, B.: Sparse channel estimation via matching pursuit with application to equalization. IEEE Trans. Commun. 50(3), 374–377 (2002). https://doi.org/10.1109/26.990897

    Article  Google Scholar 

  8. Carbonelli, C., Mitra, U.: A simple sparse channel estimator for underwater acoustic channels. In: Proceedings of OCEANS, pp. 1–6. MTS/IEEE (2007). https://doi.org/10.1109/oceans.2007.4449228

  9. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006). https://doi.org/10.1109/TIT.2006.871582

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal recovery from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006). https://doi.org/10.1109/TIT.2005.862083

    Article  MATH  Google Scholar 

  11. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52, 5406–5425 (2006). https://doi.org/10.1109/TIT.2006.885507

    Article  MathSciNet  MATH  Google Scholar 

  12. Berger, C.R., Wang, Z., Huang, J.-Z., Zhou, S.: Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag. 48(11), 164–174 (2010). https://doi.org/10.1109/MCOM.2010.5621984

    Article  Google Scholar 

  13. Zhang, Y., Venkatesan, R., Dobre, O.A., Li, C.: Novel compressed sensing-based channel estimation algorithm and near optimal pilot placement scheme. IEEE Trans. Wirel. Commun. 15(4), 2590–2603 (2016). https://doi.org/10.1109/TWC.2015.2505315

    Article  Google Scholar 

  14. Berger, C.R., Zhou, S., Preisig, J., Willett, P.: Sparse channel estimation for multicarrier underwater acoustic communication: from subspace methods to compressive sensing. IEEE Trans. Sig. Process. 58(3), 1708–1721 (2010). https://doi.org/10.1109/TSP.2009.2038424

    Article  Google Scholar 

  15. Bajwa, W.U., Haupt, J., Sayeed, A.M., Nowak, R.: Compressive channel sensing: a new approach to estimating sparse multipath channels. Proc. IEEE 98(6), 1058–1076 (2010). https://doi.org/10.1109/JPROC.2010.2042415

    Article  Google Scholar 

  16. Tauböck, G., Hlawatsch, F., Eiwen, D., Rauhut, H.: A compressive sensing technique for OFDM channel estimation in mobile environments: exploiting channel sparsity for reducing pilots. In: IEEE International Conference on Acoustics, Speech, Signal Process, (ICASSP), Las Vegas, pp. 2885–2888 (2008). https://doi.org/10.1109/icassp.2008.4518252

  17. Meng, J., Yin, W., Li, Y., Nguyen, N.T., Han, Z.: Compressive sensing based high resolution channel estimation for OFDM system. IEEE J. Sel. Topics Sig. Process. 6(1), 15–25 (2012). https://doi.org/10.1109/JSTSP.2011.2169649

    Article  Google Scholar 

  18. Huang, J.-Z., Berger, C.R., Zhou, S., Huang, J.: Comparison of basis pursuit algorithms for sparse channel estimation in underwater acoustic OFDM. In: Proceedings of OCEANS, pp. 164–174. MTS/IEEE (2010). https://doi.org/10.1109/oceanssyd.2010.5603522

  19. Donoho, D.L., Maleki, A., Montanari, A.: Message passing algorithms for compressive sensing. Proc. Nat. Acad. Sci. 106 (2009). https://doi.org/10.1073/pnas.0909892106

  20. Vila, J., Schniter, P.: Expectation-maximization Bernoulli-Gaussian approximate message passing. In: Proceedings of Asilomar Conference Signals Systems Computers, Pacific Grove, CA, pp. 799–803 (2011). https://doi.org/10.1109/acssc.2011.6190117

  21. Do, T.T., Lu, G., Nam, N., Tran, T.D.: Sparsity adaptive matching pursuit algorithm for practical compressive sensing. In: Proceedings of 42nd Asilomar Conference on Signals Systems Computers, pp. 581–587 (2008). https://doi.org/10.1109/acssc.2008.5074472

  22. Zhang, Y., Venkatesan, R., Dobre, O.A., Li, C.: An adaptive matching pursuit algorithm for sparse channel estimation. In: Proceedings of IEEE Wireless Communications and Networking Conference, New Orleans, LA, pp. 626–630 (2015). https://doi.org/10.1109/wcnc.2015.7127542

  23. Candès, E.J., Demanet, L.D., Donoho, L., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)

    Article  MathSciNet  Google Scholar 

  24. Candès, E.J., Eldar, Y.C., Needell, D., Randall, P.: Compressive sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31(1), 59–73 (2011). https://doi.org/10.1016/j.acha.2010.10.002

    Article  MathSciNet  MATH  Google Scholar 

  25. Davenport, M.A., Needell, D., Wakin, M.B.: Signal sparse CoSaMP for sparse recovery with redundant dictionaries. IEEE Trans. Inf. Theory 59(10), 6820–6829 (2013). https://doi.org/10.1109/TIT.2013.2273491

    Article  MATH  Google Scholar 

  26. Tang, G., Bhaskar, N., Shah, P., Recht, B.: Compressive sensing off the grid. IEEE Trans. Inf. Theory 59(11), 7465–7490 (2013). https://doi.org/10.1109/Allerton.2012.6483297

    Article  MATH  Google Scholar 

  27. Tropp, J.A., Gilbert, A.C.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007). https://doi.org/10.1109/TIT.2007.909108

    Article  MathSciNet  MATH  Google Scholar 

  28. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Commun. ACM 53(12), 93–100 (2010). https://doi.org/10.1145/1859204.1859229. California Institute of Technology, Pasadena

    Article  MATH  Google Scholar 

  29. Bia, X., Chen, X., Zhang, Y.: Variable step size stagewise adaptive matching pursuit algorithm for image compressive sensing. In: Proceedings of IEEE International Conference on Signal Processing, Communication and Computing (ICSPCC), Kunming, China, pp. 1–4 (2013). https://doi.org/10.1109/icspcc.2013.6663917

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Venkatesan, R., Dobre, O.A., Li, C. (2018). Sparse Channel Estimation Based on Compressive Sensing with Overcomplete Dictionaries in OFDM Communication Systems. In: Bhattacharyya, P., Sastry, H., Marriboyina, V., Sharma, R. (eds) Smart and Innovative Trends in Next Generation Computing Technologies. NGCT 2017. Communications in Computer and Information Science, vol 828. Springer, Singapore. https://doi.org/10.1007/978-981-10-8660-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8660-1_7

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8659-5

  • Online ISBN: 978-981-10-8660-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics