Plasmonics for THz Applications: Design of Graphene Square Patch Antenna Tested with Different Substrates for THz Applications

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 828)


This paper gives a brief description of the mathematical techniques used to define plasmonics. The kinetic theory using Vlasov equation is one that gives the concept of plasma generation. Plasmonic antennas better suited for THz applications has added advantages in terms of bandwidth. Taking Graphene patch antenna, which is one of the plasmonic material, is designed in the THz range. This antenna gives wide bandwidth in GHz and THz range. The Graphene patch is designed and tested with Si, SiO2 and Al2O3 substrates, which gives S11 at different THz frequencies and different bandwidths.


Graphene patch antenna 5G applications Si Al2o3 and SiO2 substrates 


  1. 1.
    Sadon, S.N.H., Kamarudin, M.R., Ahmad, F., Jusoh, M., Majid, H.A.: Graphene array antenna for 5G applications. Appl. Phys. A 123(2), 118 (2017)CrossRefGoogle Scholar
  2. 2.
    Thampy, A.S., Darak, M.S., Dhamodharan, S.K.: Analysis of graphene based optically transparent patch antenna for terahertz communications. J. Phys. Phys. E: Low-dimens. Syst Nanostruct. 66, 67–73 (2015)Google Scholar
  3. 3.
    Grushin, A.G., Valenzuela, B., Vozmediano, M.A.: Effect of coulomb interaction on the optical properties of doped graphene. Phy. Rev. B 80, 155417 (2009)CrossRefGoogle Scholar
  4. 4.
    Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J.M., Alarcon, E., Chigrin, D.N.: Graphene-based nano-patch antenna for terahertz radiation. Photon. Nanostruct. Fundam. Appl. 10, 353–358 (2012)CrossRefGoogle Scholar
  5. 5.
    Liu, Z.B., Zhang, X.L., Yan, X.Q., Chen, Y.S., Tian, J.G.: Nonlinear optical properties of graphene-based materials. Chin. Sci. Bull. 57(23), 2971–2982 (2012). Review Special Issue: GrapheneCrossRefGoogle Scholar
  6. 6.
    Lin, Y.M., Jenkins, K.A., Valdes-Garcia, A., Small, J.P., Farmer, D.B., Avouris, P.: Operation of graphene transistors at gigahertz frequencies. Nano Lett. A 9(1), 422–426 (2009)CrossRefGoogle Scholar
  7. 7.
    Gusyrin, V.P., Sharapov, S.G., Carbotte, J.P.: Magneto optical conductivity in graphene. J. Phys.: Condens. Matter 19(2), 02622 (2007)Google Scholar
  8. 8.
    Hanson, G.W.: Dyadic Green’s functions for an anisotropic non local model of biased graphene. IEEE Trans. Antennas Propag. 56(3), 747–757 (2009)CrossRefGoogle Scholar
  9. 9.
    Villani, C.: A review of mathematical topics in collisional kinetic theory. Handb. Math. Fluid Dyn. 1, 71–305 (2002). Elsevier ScienceMathSciNetCrossRefGoogle Scholar
  10. 10.
    Akyildiz, I.F., Jornet, M.: Grapheme based plasmonic nano antenna for terahertz. IEEE J. Sel. Areas Commun. 31(12), 685–694 (2013)CrossRefGoogle Scholar
  11. 11.
    Vakil, A., Engheta, N.: Transformation optics using graphene. Science 332(6035), 1291–1294 (2011)CrossRefGoogle Scholar
  12. 12.
    Dragoman, M., Muller, A.A., Dragoman, D., Coccetti, F., Plana, R.: Terahertz antenna based on graphene. J. Appl. Phys. 107, 104313 (2010)CrossRefGoogle Scholar
  13. 13.
    Tong, L., Wei, H., Zhang, S., Xu, H.: Recent advances in plasmonics sensors. Sensors 14, 7959–7973 (2014). ISSN 1424-8220CrossRefGoogle Scholar
  14. 14.
    Bala, R., Marwaha, A.: Characterization of graphene for performance enhancement of patch antenna in THz region, Elsevier (2014)CrossRefGoogle Scholar
  15. 15.
    Jackson, J.: Classical Electrodynamics, 3rd edn. Wiley, India (2010)zbMATHGoogle Scholar
  16. 16.
    Gallagher, P.T.: Introduction to plasma physics, lecture 6: Kinetic theory, Astrophysics Research Group, Trinity College Dublin, 25 Sept 2013Google Scholar
  17. 17.
    Paruisseaee, J., Tamagnone, C.M., Gomez- Diaz, J.S., Carrasco, E.: Grapheme antennas: can integration and reconfigurability compensate for loss. In: Microwave Conference (EuMC) (2013)Google Scholar
  18. 18.
    Llatser, I., Kremers, C., Chigrin, D.N., Jornet, J.M., Lemme, M.C., Aparicio, A.C., Alarcon, E.: Characterization of graphene based nano antennas in Terahertz Band. In: EuCAP 2012, Prague (2012)Google Scholar
  19. 19.
    Jornet, J.M., Akyildiz, I.F.: Grapheme based Plasmonic Nano antenna for electromagnetic Nano communication is the Terahertz Band. In: European Conference on Antenna and Propagation, Barcelona (2010)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Ambedkar Institute of Advance Communication Technology and Research, New DelhiNew DelhiIndia
  2. 2.AMITY UniversityNoidaIndia
  3. 3.Netaji Subhash Institute of TechnologyNew DelhiIndia

Personalised recommendations