Advertisement

IEEMARP: Improvised Energy Efficient Multipath Ant Colony Optimization (ACO) Routing Protocol for Wireless Sensor Networks

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 828)

Abstract

Wireless Sensor Networks (WSNs) being special type of wireless communication networks, characterized via various specific features like Limited Memory, Energy, Less Processing power. In Wireless Sensor Networks, every sensor node actively participates in routing work by forwarding the packets from sender to receiver and the packet forwarding is entirely based on network topology. One of the most important issue surrounding WSNs is Energy Efficiency and Efficient Routing mechanism which should be dynamic and efficient enough to handle changing topologies. So, there is utmost need for optimization techniques which can lay the foundation of development of suitable routing protocol to attain energy efficiency and routing in sensor networks. Swarm Intelligence is one the most important technique which is highly considered for developing energy efficient routing protocols. Considering Swarm Intelligence, Ant Colony Optimization (ACO) technique is utilized to propose Energy Efficient protocol for WSN. In this paper, a Novel Energy Efficient Routing Protocol based on ACO for WSN is proposed i.e. IEEMARP (Improvised Energy Efficient Multipath Ant Based Routing Protocol). Hardcore testing of protocol proposed i.e. IEEMARP is done in different simulation scenarios using NS-2 simulator on varied parameters like Packet Delivery Ratio, Throughput, Routing Overhead, Energy Consumption and End-To-End Delay and performance is compared with other routing protocols like Basic ACO, DSDV, DSR, ACEAMR, Ant Chain, EMCBR and IACR. The results states that IEEMARP is almost 7 to 10 times better in different parameters. It has also been observed that IEEMARP routing protocol is also efficient in transmitting TCP packets.

Keywords

Sensor networks Wireless Sensor Networks ACO Routing Pheromone table IEEMARP Energy Efficiency NS-2 ACEAMRA IACR EMCBR Ant chain DSDV DSR AODV Routing protocol 

References

  1. 1.
    Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: a survey. Comput. Netw. 38(4), 393–422 (2002)CrossRefGoogle Scholar
  2. 2.
    Potdar, V., Sharif, A., Chang, E.: Wireless sensor networks: a survey. In: International Conference on Advanced Information Networking and Applications Workshops, WAINA 2009, pp. 636–641. IEEE, May 2009Google Scholar
  3. 3.
    Yang, K.: Wireless Sensor Networks. Principles, Design and Applications. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-1-4471-5505-8CrossRefGoogle Scholar
  4. 4.
    Li, M.A., Guoqing, W.A.N.G., Dongchao, M.A., Jianpei, H.E.: Wireless Sensor Networks (2014)Google Scholar
  5. 5.
    Rawat, P., Singh, K.D., Chaouchi, H., Bonnin, J.M.: Wireless sensor networks: a survey on recent developments and potential synergies. J. Supercomput. 68(1), 1–48 (2014)CrossRefGoogle Scholar
  6. 6.
    Dargie, W., Poellabauer, C.: Fundamentals of Wireless Sensor Networks: Theory and Practice. Wiley, Hoboken (2010)CrossRefGoogle Scholar
  7. 7.
    Khan, S., Pathan, A.S.K., Alrajeh, N.A. (eds.): Wireless Sensor Networks: Current Status and Future Trends. CRC Press, Boca Raton (2012)Google Scholar
  8. 8.
    Mohan, B.C., Baskaran, R.: A survey: ant colony optimization based recent research and implementation on several engineering domain. Expert Syst. Appl. 39(4), 4618–4627 (2012)CrossRefGoogle Scholar
  9. 9.
    Dorigo, M., Birattari, M., Stutzle, T.: Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)CrossRefGoogle Scholar
  10. 10.
    Stützle, T.: Ant colony optimization. In: Ehrgott, M., Fonseca, C.M., Gandibleux, X., Hao, J.-K., Sevaux, M. (eds.) EMO 2009. LNCS, vol. 5467, p. 2. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-01020-0_2CrossRefGoogle Scholar
  11. 11.
    Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 2, pp. 1470–1477. IEEE (1999)Google Scholar
  12. 12.
    Dorigo, M., Blum, C.: Ant colony optimization theory: A survey. Theor. Comput. Sci. 344(2–3), 243–278 (2005)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Blum, C.: Ant colony optimization: introduction and recent trends. Phys. Life Rev. 2(4), 353–373 (2005)CrossRefGoogle Scholar
  14. 14.
    Maniezzo, V., Carbonaro, A.: Ant colony optimization: an overview. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, vol. 15, pp. 469–492. Springer, Boston (2002).  https://doi.org/10.1007/978-1-4615-1507-4_21CrossRefGoogle Scholar
  15. 15.
    Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In: Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics, pp. 227–263. Springer, Boston (2010).  https://doi.org/10.1007/978-1-4419-1665-5_8CrossRefGoogle Scholar
  16. 16.
    Nayyar, A., Singh, R.: Ant colony optimization—computational swarm intelligence technique. In: 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom), pp. 1493–1499. IEEE, March 2016Google Scholar
  17. 17.
    Cauvery, N.K., Viswanatha, K.V.: Enhanced ant colony based algorithm for routing in mobile ad hoc network. World Acad. Sci. Eng. Technol. 46, 30–35 (2008)Google Scholar
  18. 18.
    Blum, C., Li, X.: Swarm intelligence in optimization. In: Blum, C., Merkle, D. (eds.) Swarm Intelligence, pp. 43–85. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-74089-6_2CrossRefGoogle Scholar
  19. 19.
    Kennedy, J.F., Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann, Burlington (2001)Google Scholar
  20. 20.
    Dorigo, M., Birattari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.): ANTS 2008. LNCS, vol. 5217. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-87527-7CrossRefzbMATHGoogle Scholar
  21. 21.
    Rao, S.S., Singh, V.: Optimization. IEEE Trans. Syst. Man Cybern. 9(8), 447 (1979)CrossRefGoogle Scholar
  22. 22.
    Rao, S.S., Rao, S.S.: Engineering Optimization: Theory and Practice. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  23. 23.
    Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm intelligence. Swarm Intell. 1(1), 3–31 (2007)CrossRefGoogle Scholar
  24. 24.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems, vol. 1. Oxford university press, Oxford (1999)zbMATHGoogle Scholar
  25. 25.
    Engelbrecht, A.P.: Computational Intelligence: An Introduction. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  26. 26.
    Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)CrossRefGoogle Scholar
  27. 27.
    Nayyar, A., Singh, R.: A Comprehensive Review of Ant Colony Optimization (ACO) based Energy-Efficient Routing Protocols for Wireless Sensor Networks (2016)Google Scholar
  28. 28.
    Saleem, M., Di Caro, G.A., Farooq, M.: Swarm intelligence based routing protocol for wireless sensor networks: survey and future directions. Inf. Sci. 181(20), 4597–4624 (2011)CrossRefGoogle Scholar
  29. 29.
    Zungeru, A.M., Ang, L.M., Seng, K.P.: Classical and swarm intelligence based routing protocols for wireless sensor networks: a survey and comparison. J. Netw. Comput. Appl. 35(5), 1508–1536 (2012)CrossRefGoogle Scholar
  30. 30.
    Zengin, A., Tuncel, S.: A survey on swarm intelligence based routing protocols in wireless sensor networks. Int. J. Phys. Sci. 5(14), 2118–2126 (2010)Google Scholar
  31. 31.
    Ali, Z., Shahzad, W.: Critical analysis of swarm intelligence based routing protocols in adhoc and sensor wireless networks. In: 2011 International Conference on Computer Networks and Information Technology (ICCNIT), pp. 287–292. IEEE, July 2011Google Scholar
  32. 32.
    Okdem, S., Karaboga, D.: Routing in wireless sensor networks using ant colony optimization. In: First NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2006, pp. 401–404. IEEE, June 2006Google Scholar
  33. 33.
    Sim, K.M., Sun, W.H.: Ant colony optimization for routing and load-balancing: survey and new directions. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 33(5), 560–572 (2003)CrossRefGoogle Scholar
  34. 34.
    Ren, H., Meng, M.Q.H.: Biologically inspired approaches for wireless sensor networks. In: Proceedings of the 2006 IEEE International Conference on Mechatronics and Automation, pp. 762–768. IEEE, June 2006Google Scholar
  35. 35.
    Iyengar, S.S., Wu, H.C., Balakrishnan, N., Chang, S.Y.: Biologically inspired cooperative routing for wireless mobile sensor networks. IEEE Syst. J. 1(1), 29–37 (2007)CrossRefGoogle Scholar
  36. 36.
    Gunes, M., Sorges, U., Bouazizi, I.: ARA-the ant-colony based routing algorithm for MANETs. In: Proceedings of 2002 International Conference on Parallel Processing Workshops, pp. 79–85. IEEE (2002)Google Scholar
  37. 37.
    Shah, R.C., Rabaey, J.M.: Energy aware routing for low energy ad hoc sensor networks. In: 2002 IEEE Wireless Communications and Networking Conference, WCNC2002, vol. 1, pp. 350–355. IEEE, March 2002Google Scholar
  38. 38.
    Hussein, O., Saadawi, T.: Ant routing algorithm for mobile ad-hoc networks (ARAMA). In: Proceedings of the 2003 IEEE International Conference on Performance, Computing, and Communications Conference, pp. 281–290. IEEE, April 2003Google Scholar
  39. 39.
    Di Caro, G., Dorigo, M.: AntNet: distributed stigmergetic control for communications networks. J. Artif. Intell. Res. 9, 317–365 (1998)zbMATHGoogle Scholar
  40. 40.
    Camilo, T., Carreto, C., Silva, J.S., Boavida, F.: An energy-efficient ant-based routing algorithm for wireless sensor networks. In: Dorigo, M., Gambardella, L.M., Birattari, M., Martinoli, A., Poli, R., Stützle, T. (eds.) ANTS 2006. LNCS, vol. 4150, pp. 49–59. Springer, Heidelberg (2006).  https://doi.org/10.1007/11839088_5CrossRefGoogle Scholar
  41. 41.
    Patel, M., Chandrasekaran, R., Venkatesan, S.: Efficient minimum-cost bandwidth-constrained routing in wireless sensor networks. In: International Conference on Wireless Networks, pp. 447–453, June 2004Google Scholar
  42. 42.
    Xia, S., Wu, S.: Ant colony-based energy-aware multipath routing algorithm for wireless sensor networks. In: 2009 Second International Symposium on Knowledge Acquisition and Modeling, KAM 2009, vol. 3, pp. 198–201. IEEE, November 2009Google Scholar
  43. 43.
    Peng, S., Yang, S.X., Gregori, S., Tian, F.: An adaptive QoS and energy-aware routing algorithm for wireless sensor networks. In: 2008 International Conference on Information and Automation, ICIA 2008, pp. 578–583. IEEE, June 2008Google Scholar
  44. 44.
    Nayyar, A., Singh, R.: Ant colony optimization (ACO) based routing protocols for wireless sensor networks (WSN): a survey. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 8(2), 148–155 (2017)Google Scholar
  45. 45.
    Nayyar, A., Singh, R.: A comprehensive review of simulation tools for wireless sensor networks (WSNs). J. Wirel. Netw. Commun. 5(1), 19–47 (2015)Google Scholar
  46. 46.
    Nayyar, A., Singh, R.: Simulation and performance comparison of ant colony optimization (ACO) routing protocol with AODV, DSDV, DSR routing protocols of wireless sensor networks using NS-2 simulator. Am. J. Intell. Syst. 7(1), 19–30 (2017)Google Scholar
  47. 47.
    Nayyar, A., Singh, R.: Performance analysis of ACO based routing protocols-EMCBR, AntChain, IACR, ACO-EAMRA for wireless sensor networks (WSNs). Br. J. Math. Comput. Sci. 20(6), 1–18 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Desh Bhagat UniversityMandi GobindgarhIndia
  2. 2.Doaba Group of CollegesNawanshahrIndia

Personalised recommendations