Skip to main content

Enhancing Noise-Tolerant Behavior of Traditional Evolutionary and Swarm Algorithms

  • Chapter
  • First Online:
Principles in Noisy Optimization

Part of the book series: Cognitive Intelligence and Robotics ((CIR))

  • 531 Accesses

Abstract

In the last two chapters, noise handling strategies are proposed to extend the traditional differential evolution (DE), in both single- and multi-objective optimization settings, to proficiently track global optima in noise-induced multimodal fitness landscape(s). This chapter extends the traditional single-objective artificial bee colony (ABC), particle swarm optimization (PSO), and firefly algorithm (FA), and their respective multi-objective counterparts, with the noise handling stratagems already introduced in the previous chapters. These evolutionary and swarm optimization algorithms are selected as the basic algorithms for their wide popularity in the domain of meta-heuristic optimization with respect to computational accuracy and run-time complexity. The objective of this chapter is to study and validate the efficacy of the search dynamics of these well-known evolutionary and swarm algorithms to proficiently identify the global optima in the presence of stochastic noise in the fitness landscape(s). Experiments undertaken on noisy versions of the standard benchmark problems reveal that the extended versions of single- and multi-objective ABC outperform their contenders in most of the cases. The comparative analysis of the extended algorithms on the real-world multi-robot coordination problems in the presence of noisy sensory data also substantiates the quality performance of the proposed noisy versions of single- and multi-objective ABC over its contenders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Deb, A.P.S. Agarwal, T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA II. IEEE Trans. Evol. Comput. 2, 162–197 (1998)

    Article  Google Scholar 

  2. P. Rakshit, A. Konar, S. Das, Noisy evolutionary optimization algorithms—a comprehensive survey. Swarm Evol. Comput. 33, 18–45 (2017). Elsevier

    Article  Google Scholar 

  3. P. Rakshit, A. Konar, S. Das, L.C. Jain, A.K. Nagar, Uncertainty management in differential evolution induced multiobjective optimization in presence of measurement noise. IEEE Trans. Syst. Man Cybern. Syst. 44(7), 922–937 (2014)

    Article  Google Scholar 

  4. P. Rakshit, A. Konar, Differential evolution for noisy multiobjective optimization. Artif. Intell. 227, 165–189 (2015)

    Article  MathSciNet  Google Scholar 

  5. P. Rakshit, A. Konar, Extending multi-objective differential evolution for optimization in presence of noise. Inf. Sci. 305, 56–76 (2015)

    Article  Google Scholar 

  6. P. Rakshit, A. Konar, Non-dominated sorting bee colony optimization in the presence of noise. Soft Comput. 20(3), 1139–1159 (2016)

    Article  Google Scholar 

  7. P. Rakshit, A. Konar, A.K. Nagar, Artificial bee colony induced multi-objective optimization in presence of noise, in Proceedings of IEEE Congress on Evolutionary Computation, 2014, pp. 3176–3183

    Google Scholar 

  8. P. Rakshit, A. Konar, A.K. Nagar, Type-2 fuzzy induced non-dominated sorting bee colony for noisy optimization, in Proceedings of IEEE Congress on Evolutionary Computation, 2015, pp. 3176–3183

    Google Scholar 

  9. P. Rakshit, A. Konar, A.K. Nagar, Multi-robot box-pushing in presence of measurement noise, in Proceedings of IEEE Congress on Evolutionary Computation, 2016, pp. 4926–4933

    Google Scholar 

  10. P. Rakshit, A. Konar, A.K. Nagar, Learning automata induced artificial bee colony for noisy optimization, in Proceedings of IEEE Congress on Evolutionary Computation, 2017, pp. 984–991

    Google Scholar 

  11. P. Rakshit, A. Konar, P. Bhowmik, I. Goswami, S. Das, L.C. Jain, A.K. Nagar, Realization of an adaptive memetic algorithm using differential evolution and Q-learning: a case study in multirobot path-planning. IEEE Trans. Syst. Man Cybern. Syst. 43(4), 814–831 (2013)

    Article  Google Scholar 

  12. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  13. K. Price, R.M. Storn, J.A. Lampinen, Differential Evolution: A Practical Approach to Global Optimization (Springer Science & Business Media, 2006)

    Google Scholar 

  14. U.K. Chakraborty, Advances in Differential Evolution (Springer, Heidelberg, New York, 2008)

    Book  Google Scholar 

  15. S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  16. T. Robic, B. Philipic, DEMO: differential evolution for multiobjective optimization, in Proceedings of the Third International Conference on Evolutionary Multi-Criterion Optimization, ed. by C.A. Coello Coello, A.H. Aguirre, E. Zitzler. Springer Lecture Notes in Computer Science: Guanajuato, Mexico, vol. 3410, 2005, pp. 520–533

    Google Scholar 

  17. P. Rakshit, A.K. Sadhu, A. Halder, A. Konar, R. Janarthanan, Multi-robot box-pushing using differential evolution algorithm for multiobjective optimization, in Proceedings of International Conference on Soft Computing and Problem Solving, vol. 11, 2011, pp. 355–365

    Google Scholar 

  18. B. Basturk, D. Karaboga, An artificial bee colony (ABC) algorithm for numeric function optimization, in Proceedings of the IEEE Swarm Intelligence Symposium, 2006

    Google Scholar 

  19. D. Karaboga, B. Basturk, On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 8, 687–697 (2008). Elsevier

    Article  Google Scholar 

  20. D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 29, 459–471 (2007)

    Article  MathSciNet  Google Scholar 

  21. R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995, pp. 39–43

    Google Scholar 

  22. J. Kennedy, R.C. Eberhart, Particle swarm optimization, in Proceedings of IEEE International Conference on Neural Networks, vol. IV, 1995, pp. 1942–1948

    Google Scholar 

  23. J. Kennedy, R.C. Eberhart, A discrete binary version of the particle swarm algorithm, in Proceedings of the Conference on Systems, Man, and Cybernetics, 1997, pp. 4104–4109

    Google Scholar 

  24. X.S. Yang, “Firefly Algorithms for Multimodal Optimization”, Stochastic Algorithms: Foundations and Applications (Springer, Berlin, Heidelberg, 2009), pp. 169–178

    Book  Google Scholar 

  25. A.G. Roy, P. Rakshit, A. Konar, S. Bhattacharya, E. Kim, A.K. Nagar, Adaptive firefly algorithm for nonholonomic motion planning of car-like system, in Proceeding of IEEE Congress on Evolutionary Computation, 2013, pp. 2162–2169

    Google Scholar 

  26. P. Rakshit, A. Konar, A. Chowdhury, E. Kim, A.K. Nagar, Multi-objective evolutionary approach of ligand design for protein-ligand docking problem, in Proceedings of IEEE Congress on Evolutionary Computation, 2013, pp. 237–244

    Google Scholar 

  27. P. Rakshit, A.K. Sadhu, P. Bhattacharjee, A. Konar, R. Janarthanan, Multi-robot box-pushing using non-dominated sorting bee colony optimization algorithm, in Proceedings of Swarm, Evolutionary and Memetic Computing Conference, vol. 7076, Dec 2011, pp. 601–609

    Google Scholar 

  28. C.A. Coello Coello, M. Lechuga, MOPSO: a proposal for multiple objective particle swarm optimization, in Proceedings of IEEE Congress of Evolutionary Computation, vol. 2, May 2002, pp. 1051–1056

    Google Scholar 

  29. C.A. Coello Coello, G.T. Pulido, M.S. Lechuga, Handling multiple objectives with particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 256–279 (2004)

    Article  Google Scholar 

  30. A. Chowdhury, P. Rakshit, A. Konar, Prediction of protein-protein interaction network using a multi-objective optimization approach. J. Bioinform. Comput. Biol. 14(3), 1650008–1650041 (2016)

    Article  Google Scholar 

  31. S. Lakshmivarahan, M.A.L. Thathachar, Absolutely expedient learning algorithms for stochastic automata. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 3, 281–286 (1973)

    MathSciNet  MATH  Google Scholar 

  32. K.S. Narendra, M.L.A.A. Thathachar, Learning automata-a survey. IEEE Trans. Syst. Man Cybern. 4, 323–334 (1974)

    Article  MathSciNet  Google Scholar 

  33. A.D. Pietro, L. While, L. Barone, Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions, in Proceedings of IEEE Congress on Evolutionary Computation, vol. 2, 2004, pp. 1254–1261

    Google Scholar 

  34. J.J. Liang, B.Y. Qu, P.N. Suganthan, A.G.H. Díaz, Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization. Technical report 201212, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, 2013

    Google Scholar 

  35. G.E.P. Box, M.E. Muller, A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)

    Article  Google Scholar 

  36. D.E. Knuth, in The art of computer programming. Seminumerical Algorithms, vol. 2 (1981)

    Google Scholar 

  37. W. Hörmann, J. Leydold, G. Derflinger, General principles in random variate generation, in Automatic Nonuniform Random Variate Generation (Springer, Berlin Heidelberg, 2004), pp. 13–41

    Chapter  Google Scholar 

  38. G. Marsaglia, W.W. Tsang, The ziggurat method for generating random variables. J. Stat. Softw. 5(8), 1–7 (2000)

    Article  Google Scholar 

  39. J.H. Ahrens, U. Dieter, Generating gamma variates by a modified rejection technique. Commun. ACM 25(1), 47–54 (1982)

    Article  MathSciNet  Google Scholar 

  40. J. Bolte, Linear Congruential Generators, Wolfram Demonstrations Project

    Google Scholar 

  41. Q. Zhang, A. Zhou, S. Zhao, P.N. Suganthan, W. Liu, S. Tiwari, Multi-objective optimization test instances for the cec 2009 special session and competition. Working report, CES-887, School of Computer Science and Electrical Engineering, University of Essex, 2008

    Google Scholar 

  42. P. Rakshit, A. Konar, S. Das, A.K. Nagar, ABC-TDQL: an adaptive memetic algorithm, in IEEE Workshop on Hybrid Intelligent Models and Applications, 2013, pp. 35–42

    Google Scholar 

  43. J. De, N. Biswas, P. Rakshit, R.S. Sen, B. Oraon, G. Majumdar, Computation and optimisation of electroless Ni-Cu-P coating using evolutionary algorithms. ARPN J. Eng. Appl. Sci. 10(5) (2015)

    Google Scholar 

  44. A. Chowdhury, P. Rakshit, A. Konar, A.K. Nagar, A multi-objective evolutionary approach to predict protein-protein interaction network, in IEEE Congress on Evolutionary Computation, 2015, pp. 1628–1635

    Google Scholar 

  45. X. Li, Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans. Evol. Comput. 14(1), 150–169 (2010)

    Article  Google Scholar 

  46. P. Bhattacharjee, P. Rakshit, I. Goswami, A. Konar, A.K. Nagar, Multi-robot path-planning using artificial bee colony optimization algorithm, in World Congress on Nature and Biologically Inspired Computing, 2011, pp. 219–224

    Google Scholar 

  47. J. Chakraborty, A. Konar, U.K. Chakraborty, L.C. Jain, Distributed co-operative multi robot path-planning using differential evolution, in IEEE Congress on Evolutionary Computation, 2009, pp. 718–725

    Google Scholar 

  48. P. Rakshit, A. Konar, “Learning Automata and Niching Induced Noisy Optimization for Multi-Robot Path-Planning,” Principles in Noisy Optimization: ​Applied to Multi-Agent Coordination, Springer, 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratyusha Rakshit .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rakshit, P., Konar, A. (2018). Enhancing Noise-Tolerant Behavior of Traditional Evolutionary and Swarm Algorithms. In: Principles in Noisy Optimization. Cognitive Intelligence and Robotics. Springer, Singapore. https://doi.org/10.1007/978-981-10-8642-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8642-7_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8641-0

  • Online ISBN: 978-981-10-8642-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics