Skip to main content

Takagi Sugeno Fuzzy for Motion Control of Ball on Plate System

  • Conference paper
  • First Online:
Recent Findings in Intelligent Computing Techniques

Abstract

This paper presents the Takagi Sugeno (TS) fuzzy scheme for stabilization and motion control of ball on plate system. Plant nonlinearity and inter-axis coupling are the two major challenges which enhance the complexity of controller design for ball on plate system. Hence, in this paper, we utilize the TS fuzzy-based input–output mapping to deal with the nonlinearities and model variation associated with the ball on plate system, which emulates the concept of visual servo control (VSC). The motivation for using TS fuzzy model is that it can capture the dynamics of a nonlinear plant model with fewer fuzzy rules and yield better accuracy compared to Mamdani fuzzy. Moreover, as TS fuzzy is a multimodal approach, it offers a systematic way to derive the fuzzy rules from the given input–output data. The performance of the control scheme is validated through simulation, and the tracking results prove that the TS fuzzy scheme can offer precise tracking control of ball on plate system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siradjuddin, I., Behera, L., McGinnity, T.M., Coleman, S.: Image-based visual servoing of a 7-DOF robot manipulator using an adaptive distributed fuzzy PD controller. IEEE/ASME Trans. Mechatron. 19(2), 512–523 (2014)

    Article  Google Scholar 

  2. Park, J.H., Lee, Y.J.: Robust visual servoing for motion control of the ball on a plate. Mechatronics 13(7), 723–738 (2003)

    Article  Google Scholar 

  3. Wang, Y., Sun, M., Wang, Z., Liu, Z., Chen, Z.: A novel disturbance observer based friction compensation scheme for ball and plate system. ISA Trans. 53(2), 671–678 (2014)

    Article  Google Scholar 

  4. Subramanian, R.G., Elumalai, V.K., Karuppusamy, S., Canchi, V.K.: Uniform ultimate bounded robust model reference adaptive PID control scheme for visual servoing. J. Franklin Inst. 354(4), 1741–1758 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cavallaro, F.: A Takagi-Sugeno fuzzy inference system for developing a sustainability index of biomass. Sustainability 7, 12359–12371 (2015)

    Article  Google Scholar 

  6. Nikdel, P., Hosseinpour, M., Badamchizadeh, M.A., Akbari, M.A.: Improved Takagi-Sugeno fuzzy model-based control of flexible joint robot via Hybrid-Taguchi genetic algorithm. Eng. Appl. Artif. Intell. 33, 12–20 (2014)

    Article  Google Scholar 

  7. Passino, K.M., Yurkovich, S.: Fuzzy Control. Addison-Wesley Longman, Inc, California (1998)

    Google Scholar 

  8. Husek, P., Narenathreyas, K.: Aircraft longitudinal motion control based on Takagi-Sugenofuzzy model. Appl. Soft Comput. 49, 269–278 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinodh Kumar Elumalai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elumalai, V.K., Keerthi Prasath, V., Khizer Ahamed, B., Gupta, R., Mohapatra, S.K. (2018). Takagi Sugeno Fuzzy for Motion Control of Ball on Plate System. In: Sa, P., Bakshi, S., Hatzilygeroudis, I., Sahoo, M. (eds) Recent Findings in Intelligent Computing Techniques . Advances in Intelligent Systems and Computing, vol 708. Springer, Singapore. https://doi.org/10.1007/978-981-10-8636-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8636-6_44

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8635-9

  • Online ISBN: 978-981-10-8636-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics