Skip to main content

A Study: Various NP-Hard Problems in VLSI and the Need for Biologically Inspired Heuristics

  • Conference paper
  • First Online:
Recent Findings in Intelligent Computing Techniques

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 708))

Abstract

As engineering endures to dominate the planet, its application is pervasive in almost all arenas. Thus, the problems associated with engineering optimization takes up a hike. Certain problems may be categorized as single objective optimization (SOO), a problem which has a single criterion to be optimized. In contrary, all modern problems may be classified as multi-objective optimization (MOO) a problem which has two or more objectives to be optimized. The MOO gives the fortuity for selecting the desired solution for the Pareto font where human becomes a decision maker (DM). In extension, most problems are non-deterministic polynomial in nature (NP-hard problems) wherein the obtained solution always converges near to the exact solution. Consequently, algorithms come into picture for solving these NP-hard problems. In this research work, various NP-hard problems which are in association with VLSI design akin wirelength minimization, area minimization, dead space minimization and so forth are delineated and the significant role of biologically inspired algorithms is discussed in a concise manner. The results are compared with other optimization algorithms. The results apparently protrude that bio-inspired algorithms which produce promising results comparatively with other optimization algorithms dominate the arena of algorithms whilst solving problems which are indeed NP-hard. An attempt to analyse the problems with SOO and MOO is attempted which is indeed intriguing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kendall, G., Parkes, A.J., Spoerer, K.: A survey of NP-complete puzzles. ICGA J. 31(1), 13–34 (2008)

    Article  Google Scholar 

  2. Binas, J., Indiveri, G., Pfeiffer M.: Spiking analog VLSI neuron assemblies as constraint satisfaction problem solvers. In 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2094–2097. IEEE (2016)

    Google Scholar 

  3. Chen, X., Lin, G., Chen, J., Zhu, W.: An adaptive hybrid genetic algorithm for VLSI standard cell placement problem. In: 2016 3rd International Conference on Information Science and Control Engineering (ICISCE), pp. 163–167. IEEE (2016)

    Google Scholar 

  4. Kureichik, V., Kureichik, V. Jr., Zaruba, D.: Hybrid bioinspired search for schematic design. In: Proceedings of the First International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’16), pp. 249–255. Springer International Publishing (2016)

    Google Scholar 

  5. Glaßer, C., Jonsson, P., Martin, B.: Circuit satisfiability and constraint satisfaction around Skolem Arithmetic. In: Conference on Computability in Europe, pp. 323–332. Springer International Publishing (2016)

    Google Scholar 

  6. Cheng, T.C.E., Shafransky, Y., Ng, C.T.: An alternative approach for proving the NP-hardness of optimization problems. Eur. J. Oper. Res. 248(1), 52–58 (2016)

    Article  MathSciNet  Google Scholar 

  7. Deb, K., Sindhya, K., Hakanen, J.: Multi-objective optimization. In: Decision Sciences: Theory and Practice, pp. 145–184. CRC Press (2016)

    Google Scholar 

  8. Bhuvaneswari, M.C.: Application of evolutionary algorithms for multi-objective optimization in VLSI and embedded systems. Springer, Berlin, Germany (2015)

    Book  Google Scholar 

  9. Guo, W., Liu, G., Chen, G., Peng, S.: A hybrid multi-objective PSO algorithm with local search strategy for VLSI partitioning. Front. Comput. Sci. 8(2), 203–216 (2014)

    Article  MathSciNet  Google Scholar 

  10. Lichen, Z., Runping, Y., Meixue, C., Xiaomin, J., Xuanxiang, L., Shimin, D.: An efficient simulated annealing based VLSI floorplanning algorithm for slicing structure. In: 2012 International Conference on Computer Science & Service System (CSSS), pp. 326–330. IEEE (2012)

    Google Scholar 

  11. Laudis, L.L., Anand, S., Sinha, A.K.: Modified SA algorithm for wirelength minimization in VLSI circuits. In: 2015 International Conference on Circuit, Power and Computing Technologies (ICCPCT), pp. 1–6. IEEE (2015)

    Google Scholar 

  12. Laudis, Lalin L., Sinha, A.K.: Metaheuristic approach for VLSI 3D-Floorplanning. Int. J. Sci. Res. 2(18), 202–203 (2013)

    Google Scholar 

  13. Bhatt, Sandeep N., Cosmadakis, Stavros S.: The complexity of minimizing wire lengths in VLSI layouts. Inf. Process. Lett. 25(4), 263–267 (1987)

    Article  Google Scholar 

  14. Chang, Y.-C., Chang, Y.-W., Wu, G.-M., Wu, S.-W.: B*-Trees: a new representation for non-slicing floorplans. In: Proceedings of the 37th Annual Design Automation Conference, pp. 458–463. ACM (2000)

    Google Scholar 

  15. Vygen, J.: Platzierung im VLSI Design und ein zweidimensionales zerlegungsproblem. Dissertation, University of Bonn (1996)

    Google Scholar 

  16. Liers, F., Tim N., Pardella, G.: Via Minimization in VLSI Chip Design

    Google Scholar 

  17. Laudis, L.L.: A study of various multi objective techniques in simulated annealing. Int. J. Eng. Res. Technol. (ESRSA Publications) 3(2) (2014)

    Google Scholar 

  18. Anand, S., Saravanasankar, S., Subbaraj, P.: A multiobjective optimization tool for very large scale integrated nonslicing floorplanning. Int. J. Circuit Theory Appl. 41(9), 904–923 (2013)

    Article  Google Scholar 

  19. Subbaraj, P., Saravanasankar, S., Anand, S.: Multi-objective optimization in VLSI floorplanning. In: Control, Computation and Information Systems, pp. 65–72. Springer, Berlin, Heidelberg (2011)

    Google Scholar 

  20. Lienig, J.: A parallel genetic algorithm for performance-driven VLSI routing. IEEE Trans. Evol. Comput. 1(1), 29–39 (1997)

    Article  Google Scholar 

  21. Lienig, J., Thulasiraman, K.: A genetic algorithm for channel routing in VLSI circuits. Evol. Comput. 1(4), 293–311 (1993)

    Article  Google Scholar 

  22. Singh, R.B., Baghel, A.S., Agarwal, A.: A review on VLSI floorplanning optimization using metaheuristic algorithms. In: International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), pp. 4198–4202. IEEE (2016)

    Google Scholar 

  23. Kaur, A., Gill, S.S.: Hybrid swarm intelligence for VLSI floorplan. In: 2016 International Conference on Computing, Communication and Automation (ICCCA), pp. 224–229. IEEE (2016)

    Google Scholar 

  24. Blum, C.: Ant colony optimization: introduction and recent trends. Phys. Life Rev. 2(4), 353–373 (2005)

    Article  Google Scholar 

  25. Chiang, C.-W.: Ant colony optimization for VLSI floorplanning with clustering constraints. J. Chin. Inst. Ind. Eng. 26(6), 440–448 (2009)

    Google Scholar 

  26. Bachir, Benhala, Ali, Ahaitouf, Abdellah, Mechaqrane: Multiobjective optimization of an operational amplifier by the ant colony optimisation algorithm. Electr. Electron. Eng. 2(4), 230–235 (2012)

    Article  Google Scholar 

  27. Abdullah, D.M., Abdullah, W.M., Babu, N.M., Bhuiyan, M.M.I., Nabi, K.M., Rahman, M.S.: VLSI floorplanning design using clonal selection algorithm. In: 2013 International Conference on Informatics, Electronics & Vision (ICIEV), pp. 1–6. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lalin L. Laudis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Laudis, L.L., Shyam, S., Suresh, V., Kumar, A. (2018). A Study: Various NP-Hard Problems in VLSI and the Need for Biologically Inspired Heuristics. In: Sa, P., Bakshi, S., Hatzilygeroudis, I., Sahoo, M. (eds) Recent Findings in Intelligent Computing Techniques . Advances in Intelligent Systems and Computing, vol 708. Springer, Singapore. https://doi.org/10.1007/978-981-10-8636-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8636-6_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8635-9

  • Online ISBN: 978-981-10-8636-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics