Skip to main content

Performance Metric Evaluation of Segmentation Algorithms for Gold Standard Medical Images

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 709)

Abstract

Image segmentation plays a vital role in medical image processing for the delineation of anatomical organs and analysis of anomalies. The evaluation of segmentation algorithms is vital to select the appropriate algorithm and parameters for optimum performance. In this paper, we are describing various metrics for evaluating the quality of segmentation algorithms with respect to ground truth images. The analysis of metrics has been carried out on real-time data sets of abdomen and retina. The variants of active contour algorithms are employed for the abdomen CT images, Kirsch and Wavelet algorithm were used for the retinal fundus images. This paper presents performance evaluation parameters that can be used to analyze efficiency of segmentation algorithms.

Keywords

  • Segmentation
  • Metrics
  • Evaluation
  • Success rates
  • Error rates
  • Distance measures

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-981-10-8633-5_45
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-981-10-8633-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Zhang, Hui, Fritts, Jason E., Goldman, Sally A.: Image segmentation evaluation: a survey of unsupervised methods. Comput. Vis. Image Underst. 110(2), 260–280 (2008)

    CrossRef  Google Scholar 

  2. Suri, J.S., Wilson, D., Laxminarayan, S.: Handbook of Biomedical Image Analysis, vol. 2. Springer Science & Business Media, Berlin, Germany (2005)

    Google Scholar 

  3. Ilea, D.E., Whelan, P.F., Ghita, O.: Unsupervised image segmentation based on the multi-resolution integration of adaptive local texture descriptors. In: Proceedings of the Fifth International Conference on Computer Vision Theory and Applications, vol. 2 (2010)

    Google Scholar 

  4. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 1–754 (2000)

    CrossRef  Google Scholar 

  5. Tian, W., Geng, Y., Liu, J. and Ai, L.: Optimal parameter algorithm for image segmentation. In: Second International Conference on Future Information Technology and Management Engineering (2009)

    Google Scholar 

  6. Chalana, V., Kim, Y.: A methodology for evaluation of boundary detection algorithms on medical images. IEEE Trans. Med. Imag. 16(5), 642–652 (1997)

    CrossRef  Google Scholar 

  7. Russakoff, D.B., Tomasi, C., Rohlfing, T., Maurer, C.R. Jr.: Image similarity using mutual information of regions. In: European Conference on Computer Vision, pp. 596–607 (2004)

    Google Scholar 

  8. Cardoso, J.S., Corte-Real, L.: Toward a generic evaluation of image segmentation. IEEE Trans. Image Process. 14(11), 1773–1782 (2005)

    CrossRef  Google Scholar 

  9. Fenster, A., Chiu, B.: Evaluation of segmentation algorithms for medical imaging. In: IEEE Proceedings of the Engineering in Medicine and Biology, pp. 7186–7189 (2005)

    Google Scholar 

  10. Cárdenes, R. et al.: Multimodal evaluation for medical image segmentation. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) Computer Analysis of Images and Patterns. CAIP 2007, Lecture Notes in Computer Science, vol. 4673. Springer, Berlin, Heidelberg (2007)

    Google Scholar 

  11. Monteiro F.C., Campilho A.C.: Performance evaluation of image segmentation. In: Campilho, A., Kamel, M.S. (eds.) Image Analysis and Recognition, ICIAR 2006, Lecture Notes in Computer Science, vol 4141. Springer, Berlin, Heidelberg (2006)

    Google Scholar 

  12. Withey, D.J., Koles, Z.J.: Medical image segmentation: methods and software. IEEE Proc. NFSI ICFBI 2007, 140–143 (2007)

    Google Scholar 

  13. Babalola, K.O., Patenaude, B., Aljabar, P., Schnabel, J., Kennedy, D., Crum, W., Smith, S., Cootes, T., Jenkinson, M., Rueckert, D.: An evaluation of four automatic methods of segmenting the subcortical structures in the brain. Neuro Image 47, 1435–1447 (2009)

    Google Scholar 

  14. Li, X., Aldridge, B., Rees, J., Fisher, R.: Estimating the ground truth from multiple individual segmentations with application to skin lesion segmentation. In: Proceedings of the Medical Image Understanding and Analysis Conference, UK, vol. 1, pp. 101–106 (2010)

    Google Scholar 

  15. Kohlberger, T., Singh V., Alvino C., Bahlmann C., Grady L.: Evaluating segmentation error without ground truth. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2012. MICCAI 2012, Lecture Notes in Computer Science, vol. 7510. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  16. Safarzadeh Khooshabi, G.: Segmentation Validation Framework, CMIV, Linköping University, Department of Biomedical Engineering (2013)

    Google Scholar 

  17. Agrawal, R., Sharma, M.: Review of segmentation methods for brain tissue with magnetic resonance images. Int. J. Comput. Netw. Inf. Secur. 6(4), 55 (2014)

    Google Scholar 

  18. Khan, Z.F., Kannan, A.: Intelligent segmentation of medical images using fuzzy bitplane thresholding. Meas. Sci. Rev. 14(2), 94–101 (2014)

    Google Scholar 

  19. Taha, A.A., Hanbury, A., Del Toro, O.A.J.: A formal method for selecting evaluation metrics for image segmentation. In: IEEE ICIP, pp.932–936 (2014)

    Google Scholar 

  20. Ahirwar, A.: Study of techniques used for medical image segmentation and computation of statistical test for region classification of brain MRI. I. J. Inf. Technol. Comput. Sci. 05, 44–53 (2013)

    Google Scholar 

  21. Gajanayake, G.M.N.R., Yapa, R.D., Hewawithana, B.: Comparison of standard image segmentation methods for segmentation of brain tumors from 2D MR images. IEEE International Conference on Industrial and Information Systems, pp. 301–305 (2009)

    Google Scholar 

  22. Sinthanayothin, C., Boyce, J.F., Williamson, T.H., Cook, H.L., Mensah, E., Lal, S., Usher, D.: Automated detection of diabetic retinopathy on digital fundus images. Diabet. Med. 19(2), 105–112 (2002)

    CrossRef  Google Scholar 

  23. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    CrossRef  Google Scholar 

  24. Hamamci, A., Kucuk, N., Karaman, K., Engin, K., Unal, G.: Tumor-cut: segmentation of brain tumors on contrast enhanced MR images for radiosurgery applications. IEEE Trans. Med. Imaging 31(3), 790–804 (2012)

    CrossRef  Google Scholar 

  25. Coelho, L.P., Shariff, A., Murphy, R.F.: Nuclear segmentation in microscope cell images: a hand-segmented dataset and comparison of algorithms. In: Proceedings of the IEEE International Symposium on Biomed Imaging, vol. 5193098, pp. 518–521 (2009)

    Google Scholar 

  26. Xess, M., Agnes, S.A.: Analysis of image segmentation methods based on performance evaluation parameters. Int. J. Comput. Eng. Res. 4(3), 68–75 (2014)

    Google Scholar 

  27. Chen, S., Ma, B., Zhang, K.: On the similarity metric and the distance metric. Theor. Comput. Sci. 410(24–25), 2365–2376 (2009)

    MathSciNet  CrossRef  Google Scholar 

  28. Zhang, Y., Huang, D., Ji, M., Xie, F.: Image segmentation using PSO and PCM with Mahalanobis distance. Expert Syst. Appl. 38(7), 9036–9040 (2011)

    CrossRef  Google Scholar 

  29. Kumar, S.N, Lenin Fred, A., Ajay Kumar, H., Jonisha Miriam, L.R., Asha, M.R.: Retinal blood vessel extraction using wavelet transform and morphological operations. Res. J. Pharm. Biol. Chem. Sci. 7(5) (2016)

    Google Scholar 

  30. Kumar, S.N., Fred, A.L., Kumari, L.S., Varghese, P.S.: Localized region based active contour algorithm for segmentation of abdominal organs and tumors in computer tomography images. Asian J. Inf. Technol. 15(23), 4783–4789 (2016)

    Google Scholar 

  31. Kumar, S.N., Fred, A.L., Kumari, S.L., Anchalo Bensiger, S.M.: Feed forward neural network based automatic detection of liver in computer tomography images. Int. J. PharmTech Res. 9(5) 231–239 (2016)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support provided by DST under IDP scheme (No: IDP/MED/03/2015). We thank Dr. Sebastian Varghese (Consultant Radiologist, Metro Scans and Laboratory, Trivandrum) for providing the medical CT/MR images and supporting us in the preparation of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Kumar, S.N., Lenin Fred, A., Ajay Kumar, H., Sebastin Varghese, P. (2018). Performance Metric Evaluation of Segmentation Algorithms for Gold Standard Medical Images. In: Sa, P., Bakshi, S., Hatzilygeroudis, I., Sahoo, M. (eds) Recent Findings in Intelligent Computing Techniques . Advances in Intelligent Systems and Computing, vol 709. Springer, Singapore. https://doi.org/10.1007/978-981-10-8633-5_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8633-5_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8632-8

  • Online ISBN: 978-981-10-8633-5

  • eBook Packages: EngineeringEngineering (R0)