Advertisement

Immuno-Chemotherapeutic Platinum(IV) Prodrugs of Cisplatin as Multimodal Anticancer Agents

  • Daniel Yuan Qiang WongEmail author
Chapter
  • 300 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

For the longest time, the contribution of the immune system in chemotherapy has been disregarded as cytotoxic drugs are generally believed to be immunosuppressive [1, 2, 3, 4, 5]. Consequently, evaluation of new chemotherapeutic agents involved screening of drug candidates upon xenografted tumors in immunodeficient mice which neglects any possible immune contribution.

Keywords

WKYMVm Positive Control Cisplatin Complete DMEM Hydrophilic Interaction Liquid Chromatography Analysis Drug Conjugates 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

References

  1. 1.
    Lake, R.A., Robinson, B.W.S.: Immunotherapy and chemotherapy—a practical partnership. Nat. Rev. Cancer 5, 397–405 (2005)CrossRefPubMedGoogle Scholar
  2. 2.
    Zitvogel, L., Apetoh, L., Ghiringhelli, F., Kroemer, G.: Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008)CrossRefPubMedGoogle Scholar
  3. 3.
    Lesterhuis, W.J., Haanen, J.B.A.G., Punt, C.J.A.: Cancer immunotherapy—revisited. Nat. Rev. Drug Discov. 10, 591–600 (2011)CrossRefPubMedGoogle Scholar
  4. 4.
    Galluzzi, L., Senovilla, L., Zitvogel, L., Kroemer, G.: The secret ally: immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 11, 215–233 (2012)CrossRefPubMedGoogle Scholar
  5. 5.
    Krysko, D.V., Garg, A.D., Kaczmarek, A., Krysko, O., Agostinis, P., Vandenabeele, P.: Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012)CrossRefPubMedGoogle Scholar
  6. 6.
    Hall, M.D., Mellor, H.R., Callaghan, R., Hambley, T.W.: Basis for design and development of Platinum(IV) anticancer complexes. J. Med. Chem. 50, 3403–3411 (2007)CrossRefPubMedGoogle Scholar
  7. 7.
    Hall, M.D., Hambley, T.W.: Platinum(IV) antitumour compounds: their bioinorganic chemistry. Coord. Chem. Rev. 232, 49–67 (2002)CrossRefGoogle Scholar
  8. 8.
    Chin, C.F., Wong, D.Y.Q., Jothibasu, R., Ang, W.H.: Anticancer Platinum(IV) prodrugs with novel modes of activity. Curr. Top. Med. Chem. 11, 2602–2612 (2011)CrossRefPubMedGoogle Scholar
  9. 9.
    Kelland, L.: The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007)CrossRefPubMedGoogle Scholar
  10. 10.
    Abu-Surrah, A.S., Kettunen, M.: Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem. 13, 1337–1357CrossRefPubMedGoogle Scholar
  11. 11.
    Wang, D., Lippard, S.J.: Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005)CrossRefPubMedGoogle Scholar
  12. 12.
    Reed, E.: Cisplatin, carboplatin, and oxaliplatin. In: Chabner, B.A., Longo, D.L. (eds.) Cancer chemotherapy and biotherapy: principles and practice, 5th edn, pp. 333–341. Lippincott Williams & Wilkins, Philadelphia (2011)Google Scholar
  13. 13.
    Tesniere, A., Schlemmer, F., Boige, V., Kepp, O., Martins, I., Ghiringhelli, F., Aymeric, L., Michaud, M., Apetoh, L., Barault, L., Mendiboure, J., Pignon, J.P., Jooste, V., van Endert, P., Ducreux, M., Zitvogel, L., Piard, F., Kroemer, G.: Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29, 482–491 (2009)CrossRefPubMedGoogle Scholar
  14. 14.
    Merritt, R.E., Mahtabifard, A., Yamada, R.E., Crystal, R.G., Korst, R.J.: Cisplatin augments cytotoxic T-lymphocyte-mediated antitumor immunity in poorly immunogenic murine lung cancer. J. Thorac. Cardiovasc. Surg. 126, 1609–1617 (2003)CrossRefPubMedGoogle Scholar
  15. 15.
    Ramakrishnan, R., Assudani, D., Nagaraj, S., Hunter, T., Cho, H.-I., Antonia, S., Altiok, S., Celis, E., Gabrilovich, D.I.: Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest. 120, 1111–1124 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lesterhuis, W.J., Punt, C.J.A., Hato, S.V., Eleveld-Trancikova, D., Jansen, B.J.H., Nierkens, S., Schreibelt, G., de Boer, A., Van Herpen, C.M.L., Kaanders, J.H., van Krieken, J.H.J.M., Adema, G.J., Figdor, C.G., de Vries, I.J.M.: Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J. Clin. Investig. 121, 3100–3108 (2011)CrossRefPubMedGoogle Scholar
  17. 17.
    Kleinerman, E.S., Zwelling, L.A., Muchmore, A.V.: Enhancement of naturally occurring human spontaneous monocyte-mediated cytotoxicity by cis-Diamminedichloroplatinum(II). Cancer Res. 40, 3099–3102 (1980)PubMedGoogle Scholar
  18. 18.
    Kleinerman, E., Howser, D., Young, R., Bull, J., Zwelling, L., Barlock, A., Decker, J., Muchmore, A.: Defective monocyte killing in patients with malignancies and restoration of function during chemotherapy. Lancet 316, 1102–1105 (1980)CrossRefGoogle Scholar
  19. 19.
    Lichtenstein, A.K., Pende, D.: Enhancement of natural killer cytotoxicity by cis-Diamminedichloroplatinum(II) in vivo and in vitro. Cancer Res. 46, 639–644 (1986)PubMedGoogle Scholar
  20. 20.
    Son, K., Kim, Y.-M.: In vivo cisplatin-exposed macrophages increase immunostimulant-induced nitric oxide synthesis for tumor cell killing. Cancer Res. 55, 5524–5527 (1995)PubMedGoogle Scholar
  21. 21.
    Okamoto, M., Kasetani, H., Kaji, R., Goda, H., Ohe, G., Yoshida, H., Sato, M., Kasatani, H.: cis-Diamminedichloroplatinum and 5-fluorouracil are potent inducers of the cytokines and natural killer cell activity in vivo and in vitro. Cancer Immunol. Immunother. 47, 233–241 (1998)CrossRefPubMedGoogle Scholar
  22. 22.
    Singh, R.A.K., Sodhi, A.: Antigen presentation by cisplatin-activated macrophages: role of soluble factor(s) and second messengers. Immunol. Cell Biol. 76, 513–519 (1998)CrossRefPubMedGoogle Scholar
  23. 23.
    Hu, J., Kinn, J., Zirakzadeh, A.A., Sherif, A., Norstedt, G., Wikström, A.C., Winqvist, O.: The effects of chemotherapeutic drugs on human monocyte-derived dendritic cell differentiation and antigen presentation. Clin. Exp. Immunol. 172, 490–499 (2013)CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Chang, C.-L., Hsu, Y.-T., Wu, C.-C., Lai, Y.-Z., Wang, C., Yang, Y.-C., Wu, T.-C., Hung, C.-F.: Dose-dense chemotherapy improves mechanisms of antitumor immune response. Cancer Res. 73, 119–127 (2013)CrossRefPubMedGoogle Scholar
  25. 25.
    Rosenberg, B.: Possible mechanisms for the antitumor activity of platinum coordination complexes. Cancer Chemother. Rep. 59, 589–598 (1975)PubMedGoogle Scholar
  26. 26.
    Taniguchi, K., Nishiura, H., Yamamoto, T.: Requirement of the acquired immune system in successful cancer chemotherapy with cis-Diamminedichloroplatinum(II) in a syngeneic mouse tumor transplantation model. J. Immunother. 34, 480–489 (2011)CrossRefPubMedGoogle Scholar
  27. 27.
    Wong, D.Y.Q., Lau, J.Y., Ang, W.H.: Harnessing chemoselective imine ligation for tethering bioactive molecules to platinum(iv) prodrugs. Dalton Trans. 41, 6104–6111 (2012)CrossRefPubMedGoogle Scholar
  28. 28.
    Khau, T., Langenbach, S.Y., Schuliga, M., Harris, T., Johnstone, C.N., Anderson, R.L., Stewart, A.G.: Annexin-1 signals mitogen-stimulated breast tumor cell proliferation by activation of the formyl peptide receptors (FPRs) 1 and 2. FASEB J 25, 483–496 (2011)CrossRefPubMedGoogle Scholar
  29. 29.
    Coffelt, S.B., Tomchuck, S.L., Zwezdaryk, K.J., Danka, E.S., Scandurro, A.B.: Leucine Leucine-37 uses formyl peptide receptor-like 1 to activate signal transduction pathways, stimulate oncogenic gene expression, and enhance the invasiveness of ovarian cancer cells. Mol. Cancer Res. 7, 907–915 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Huang, J., Chen, K., Chen, J., Gong, W., Dunlop, N.M., Howard, O.M.Z., Gao, Y., Bian, X.W., Wang, J.M.: The G-protein-coupled formylpeptide receptor FPR confers a more invasive phenotype on human glioblastoma cells. Br. J. Cancer 102, 1052–1060 (2010)CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Zhou, Y., Bian, X., Le, Y., Gong, W., Hu, J., Zhang, X., Wang, L., Iribarren, P., Salcedo, R., Howard, O.M.Z., Farrar, W., Wang, J.M.: Formylpeptide receptor FPR and the rapid growth of malignant human gliomas. J. Natl. Cancer Inst. 97, 823–835 (2005)CrossRefPubMedGoogle Scholar
  32. 32.
    Kim, S.D., Lee, H.Y., Shim, J.W., Kim, H.J., Baek, S.-H., Zabel, B.A., Bae, Y.-S.: A WKYMVm-containing combination elicits potent anti-tumor activity in heterotopic cancer animal model. PLoS ONE 7, e30522 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Kim, S.D., Kim, J.M., Jo, S.H., Lee, H.Y., Lee, S.Y., Shim, J.W., Seo, S.-K., Yun, J., Bae, Y.-S.: Functional expression of formyl peptide receptor family in human NK cells. J. Immunol. 183, 5511–5517 (2009)CrossRefPubMedGoogle Scholar
  34. 34.
    Le, Y., Yang, Y., Cui, Y., Yazawa, H., Gong, W., Qiu, C., Wang, J.M.: Receptors for chemotactic formyl peptides as pharmacological targets. Int. Immunopharmacol. 2, 1–13 (2002)CrossRefPubMedGoogle Scholar
  35. 35.
    Tsubery, H., Yaakov, H., Cohen, S., Giterman, T., Matityahou, A., Fridkin, M., Ofek, I.: Neopeptide antibiotics that function as opsonins and membrane-permeabilizing agents for gram-negative bacteria. Antimicrob. Agents Chemother. 49, 3122–3128 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wan, L., Zhang, X., Pooyan, S., Palombo, M.S., Leibowitz, M.J., Stein, S., Sinko, P.J.: Optimizing size and copy number For PEG-fMLF (N-Formyl-methionyl-leucyl-phenylalanine) nanocarrier uptake by macrophages. Bioconjug. Chem. 19, 28–38 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Niedel, J.E., Kahane, I., Cuatrecasas, P.: Receptor-mediated internalization of fluorescent chemotactic peptide by human neutrophils. Science 205, 1412–1414 (1979)CrossRefPubMedGoogle Scholar
  38. 38.
    Lee, C.G., Choi, S.Y., Park, S.-H., Park, K.S., Ryu, S.H., Sung, Y.C.: The synthetic peptide Trp-Lys-Tyr-Met-Val-d-Met as a novel adjuvant for DNA vaccine. Vaccine 23, 4703–4710 (2005)CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang, J.Z., Bonnitcha, P., Wexselblatt, E., Klein, A.V., Najajreh, Y., Gibson, D., Hambley, T.W.: Facile preparation of mono-, di- and mixed-Carboxylato Platinum(IV) complexes for versatile anticancer prodrug design. Chem. Eur. J. 19, 1672–1676 (2013)CrossRefPubMedGoogle Scholar
  40. 40.
    Perretti, M.: The annexin 1 receptor(s): is the plot unravelling? Trends Pharmacol. Sci. 24, 574–579 (2003)CrossRefPubMedGoogle Scholar
  41. 41.
    Le, Y., Murphy, P.M., Wang, J.M.: Formyl-peptide receptors revisited. Trends Immunol. 23, 541–548 (2002)CrossRefPubMedGoogle Scholar
  42. 42.
    Alborzinia, H., Can, S., Holenya, P., Scholl, C., Lederer, E., Kitanovic, I., Wölfl, S.: Real-time monitoring of cisplatin-induced cell death. PLoS ONE 6, e19714 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Pooyan, S., Qiu, B., Chan, M.M., Fong, D., Sinko, P.J., Leibowitz, M.J., Stein, S.: Conjugates bearing multiple formyl-methionyl peptides display enhanced binding to but not activation of phagocytic cells. Bioconjug. Chem. 13, 216–223 (2002)CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Graf, N., Mokhtari, T.E., Papayannopoulos, I.A., Lippard, S.J.: Platinum(IV)-chlorotoxin (CTX) conjugates for targeting cancer cells. J. Inorg. Biochem. 110, 58–63 (2012)CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mukhopadhyay, S., Barnés, C.M., Haskel, A., Short, S.M., Barnes, K.R., Lippard, S.J.: Conjugated Platinum(IV)–Peptide complexes for targeting angiogenic tumor vasculature. Bioconjug. Chem. 19, 39–49 (2007)CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gaviglio, L., Gross, A., Metzler-Nolte, N., Ravera, M.: Synthesis and in vitro cytotoxicity of cis,cis,trans-diamminedichloridodisuccinatoplatinum(iv)-peptide bioconjugates. Metallomics 4, 260–266 (2012)CrossRefPubMedGoogle Scholar
  47. 47.
    Abramkin, S., Valiahdi, S.M., Jakupec, M.A., Galanski, M., Metzler-Nolte, N., Keppler, B.K.: Solid-phase synthesis of oxaliplatin-TAT peptide bioconjugates. Dalton Trans. 41, 3001–3005 (2012)CrossRefPubMedGoogle Scholar
  48. 48.
    Chin, C.F., Tian, Q., Setyawati, M.I., Fang, W., Tan, E.S.Q., Leong, D.T., Ang, W.H.: Tuning the activity of Platinum(IV) anticancer complexes through asymmetric acylation. J. Med. Chem. 55, 7571–7582 (2012)CrossRefPubMedGoogle Scholar
  49. 49.
    Ang, W.H., Pilet, S., Scopelliti, R., Bussy, F., Juillerat-Jeanneret, L., Dyson, P.J.: Synthesis and characterization of Platinum(IV) anticancer drugs with functionalized aromatic carboxylate ligands: influence of the ligands on drug efficacies and uptake. J. Med. Chem. 48, 8060–8069 (2005)CrossRefPubMedGoogle Scholar
  50. 50.
    Varbanov, H., Valiahdi, S.M., Legin, A.A., Jakupec, M.A., Roller, A., Galanski, M., Keppler, B.K.: Synthesis and characterization of novel bis(carboxylato)dichloridobis(ethylamine)platinum(IV) complexes with higher cytotoxicity than cisplatin. Eur. J. Med. Chem. 46, 5456–5464 (2011)CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Gunaseelan, S., Gunaseelan, K., Deshmukh, M., Zhang, X., Sinko, P.J.: Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv. Drug Deliv. Rev. 62, 518–531 (2010)CrossRefPubMedGoogle Scholar
  52. 52.
    Qin, Y., Li, Z.-W., Yang, Y., Yu, C.-M., Gu, D.-D., Deng, H., Zhang, T., Wang, X., Wang, A.-P., Luo, W.-Z.: Liposomes formulated with fMLP-modified cholesterol for enhancing drug concentration at inflammatory sites. J. Drug Target. 22, 165–174 (2014)CrossRefPubMedGoogle Scholar
  53. 53.
    Banerjee, G., Medda, S., Basu, M.K.: A novel peptide-grafted liposomal delivery system targeted to macrophages. Antimicrob. Agents Chemother. 42, 348–351 (1998)PubMedPubMedCentralGoogle Scholar
  54. 54.
    van de Loosdrecht, A.A., Nennie, E., Ossenkoppele, G.J., Beelen, R.H.J., Langenhuijsen, M.M.A.C.: Cell mediated cytotoxicity against U 937 cells by human monocytes and macrophages in a modified colorimetric MTT assay: a methodological study. J. Immunol. Methods 141, 15–22 (1991)CrossRefPubMedGoogle Scholar
  55. 55.
    Sodhi, A., Pai, K., Singh, R.K., Singh, S.M.: Activation of human NK cells and monocytes with cisplatin in vitro. Int. J. Immunopharmacol. 12, 893–898 (1990)CrossRefPubMedGoogle Scholar
  56. 56.
    Sodhi, A., Pai, K.: Increased production of interleukin-1 and tumor necrosis factor by human monocytes treated in vitro with cisplatin or other biological response modifiers. Immunol. Lett. 34, 183–188 (1992)CrossRefPubMedGoogle Scholar
  57. 57.
    Sodhi, A., Chauhan, P.: Interaction between cisplatin treated murine peritoneal macrophages and L929 cells: involvement of adhesion molecules, cytoskeletons, upregulation of Ca2+ and nitric oxide dependent cytotoxicity. Mol. Immunol. 44, 2265–2276 (2007)CrossRefPubMedGoogle Scholar
  58. 58.
    Griffith, T.S., Wiley, S.R., Kubin, M.Z., Sedger, L.M., Maliszewski, C.R., Fanger, N.A.: Monocyte-mediated tumoricidal activity via the tumor necrosis factor–related cytokine. TRAIL. J. Exp. Med. 189, 1343–1354 (1999)CrossRefPubMedGoogle Scholar
  59. 59.
    Chauhan, P., Sodhi, A., Tarang, S.: Cisplatin-treated murine peritoneal macrophages induce apoptosis in L929 cells: role of Fas-Fas ligand and tumor necrosis factor–tumor necrosis factor receptor 1. Anticancer Drugs 18, 187–196 (2007)CrossRefPubMedGoogle Scholar
  60. 60.
    Galanski, M., Jakupec, M.A., Keppler, B.K.: Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr. Med. Chem. 12, 2075–2094 (2005)CrossRefPubMedGoogle Scholar
  61. 61.
    Dhara, S.C.: A rapid method for the synthesis of cis-[Pt(NH3)2Cl2]. Indian J. Chem. 8, 193–194 (1970)Google Scholar
  62. 62.
    Kuroda, R., Ismail, I.M., Sadler, P.J.: X-ray and NMR studies of trans-dihydroxo-platinum(IV) antitumor complexes. J. Inorg. Biochem. 22, 103–117 (1984)CrossRefPubMedGoogle Scholar
  63. 63.
    Phillips, J.A., Morgan, E.L., Dong, Y., Cole, G.T., McMahan, C., Hung, C.-Y., Sanderson, S.D.: Single-step conjugation of bioactive peptides to proteins via a self-contained succinimidyl Bis-Arylhydrazone. Bioconjug. Chem. 20, 1950–1957 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Fulmer, G.R., Miller, A.J.M., Sherden, N.H., Gottlieb, H.E., Nudelman, A., Stoltz, B.M., Bercaw, J.E., Goldberg, K.I.: NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29, 2176–2179 (2010)CrossRefGoogle Scholar
  65. 65.
    Gill, S.C., von Hippel, P.H.: Calculation of protein extinction coefficients from amino acid sequence data. Anal. Biochem. 182, 319–326 (1989)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryNational University of SingaporeSingaporeSingapore

Personalised recommendations