Skip to main content

Probing the Platinum(IV) Prodrug Hypothesis. Are Platinum(IV) Complexes Really Prodrugs of Cisplatin?

  • Chapter
  • First Online:
  • 431 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Amongst the metallopharmaceuticals in development, platinum(IV) complexes are unique because they are native prodrugs of clinically-relevant platinum(II) pharmacophores such as cisplatin and oxaliplatin (Fig. 3.1) These platinum(II) drugs are some of the most effective anticancer agents in clinical use and the first line treatment for many malignancies today (Fig. 3.1) (Hall et al. J Med Chem 50:3403–3411, 2007 [1]; Hall et al. Coord Chem Rev 232:49–67, 2002 [2]; Chin et al. J Med Chem 55:7571–7582, 2012 [3]). The general consensus is that these platinum(IV) prodrug complexes are themselves pharmacologically inactive and must undergo reductive elimination by endogenous reductants to release the active square-planar platinum(II) core with concomitant dissociation of the axial ligands (Fig. 3.2) (Hall et al. J Med Chem 50:3403–3411, 2007 [1]; Hall et al. Coord Chem Rev 232:49–67, 2002 [2]; Chin et al. J Med Chem 55:7571–7582, 2012 [3]). As such, the axial ligands confers unique possibilities of tuning the pharmacokinetic parameters such as lipophilicity and solubility as well as the attaching any targeting groups or synergistic co-drugs without altering the cellular mechanism of action of the innate platinum(II) pharmacophore (Hall et al. J Med Chem 50:3403–3411, 2007 [1]; Hall et al. Coord Chem Rev 232:49–67, 2002 [2]; Chin et al. J Med Chem 55:7571–7582, 2012 [3]).

Top: cisplatin and oxaliplatin are two platinum(II) agents in clinical use today. Bottom: Satraplatin is a promising platinum(IV) anticancer prodrug under clinical trials. Complexes 1 and 2 are newly synthesized asymmetrical platinum(IV) complexes bearing a benzaldehyde moiety for facile imine ligation to any therapeutically-relevant substrate

The platinum(IV) prodrug hypothesis: reductive elimination of platinum(IV) prodrugs occurs with the release the active platinum(II) core as well as both axial carboxylate ligands

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hall, M.D., Mellor, H.R., Callaghan, R., Hambley, T.W.: Basis for design and development of platinum(IV) anticancer complexes. J. Med. Chem. 50, 3403–3411 (2007)

    Article  CAS  PubMed  Google Scholar 

  2. Hall, M.D., Hambley, T.W.: Platinum(IV) antitumour compounds: their bioinorganic chemistry. Coord. Chem. Rev. 232, 49–67 (2002)

    Article  CAS  Google Scholar 

  3. Chin, C.F., Wong, D.Y.Q., Jothibasu, R., Ang, W.H.: Anticancer platinum (IV) prodrugs with novel modes of activity. Curr. Top. Med. Chem. 11, 2602–2612 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. Chin, C.F., Tian, Q., Setyawati, M.I., Fang, W., Tan, E.S.Q., Leong, D.T., Ang, W.H.: Tuning the activity of platinum(IV) anticancer complexes through asymmetric acylation. J. Med. Chem. 55, 7571–7582 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. Carr, J., Tingle, M., McKeage, M.: Satraplatin activation by haemoglobin, cytochrome C and liver microsomes in vitro. Cancer Chemother. Pharmacol. 57, 483–490 (2006)

    Article  CAS  PubMed  Google Scholar 

  6. Raynaud, F.I., Mistry, P., Donaghue, A., Poon, G.K., Kelland, L.R., Barnard, C.F.J., Murrer, B.A., Harrap, K.R.: Biotransformation of the platinum drug JM216 following oral administration to cancer patients. Cancer Chemother. Pharmacol. 38, 155–162 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. Pendyala, L., Cowens, J.W., Chheda, G.B., Dutta, S.P., Creaven, P.J.: Identification of cis-dichloro-bis-isopropylamine platinum(II) as a major metabolite of iproplatin in humans. Cancer Res. 48, 3533–3536 (1988)

    PubMed  CAS  Google Scholar 

  8. Petruzzella, E., Margiotta, N., Ravera, M., Natile, G.: NMR Investigation of the spontaneous thermal- and/or photoinduced reduction of trans dihydroxido Pt(IV) derivatives. Inorg. Chem. 52, 2393–2403 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. Sinisi, M., Intini, F.P., Natile, G.: Dependence of the reduction products of platinum(IV) prodrugs upon the configuration of the substrate, bulk of the carrier ligands, and nature of the reducing agent. Inorg. Chem. 51, 9694–9704 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. Nemirovski, A., Vinograd, I., Takrouri, K., Mijovilovich, A., Rompel, A., Gibson, D.: New reduction pathways for ctc-[PtCl2(CH3CO2)2(NH3)(Am)] anticancer prodrugs. Chem. Commun. 46, 1842–1844 (2010)

    Article  CAS  Google Scholar 

  11. Wexselblatt, E., Gibson, D.: What do we know about the reduction of Pt(IV) pro-drugs? J. Inorg. Biochem. 117, 220–229 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. Mukhopadhyay, S., Barnés, C.M., Haskel, A., Short, S.M., Barnes, K.R., Lippard, S.J.: Conjugated platinum(IV)—peptide complexes for targeting angiogenic tumor vasculature. Bioconjugate Chem. 19, 39–49 (2007)

    Article  CAS  Google Scholar 

  13. Gaviglio, L., Gross, A., Metzler-Nolte, N., Ravera, M.: Synthesis and in vitro cytotoxicity of cis, cis, trans-diamminedichloridodisuccinatoplatinum(IV)-peptide bioconjugates. Metallomics 4, 260–266 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. Yang, J., Sun, X., Mao, W., Sui, M., Tang, J., Shen, Y.: Conjugate of Pt(IV)–histone deacetylase inhibitor as a prodrug for cancer chemotherapy. Mol. Pharm. 9, 2793–2800 (2012)

    Article  CAS  PubMed  Google Scholar 

  15. Dhar, S., Lippard, S.J.: Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. U, S. A. (2009)

    Google Scholar 

  16. Aryal, S., Hu, C.M.J., Fu, V., Zhang, L.: Nanoparticle drug delivery enhances the cytotoxicity of hydrophobic-hydrophilic drug conjugates. J. Mater. Chem. 22, 994–999 (2012)

    Article  CAS  Google Scholar 

  17. Dhar, S., Liu, Z., Thomale, J., Dai, H., Lippard, S.J.: Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc. 130, 11467–11476 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Duong, H.T.T., Huynh, V.T., de Souza, P., Stenzel, M.H.: Core-cross-linked micelles synthesized by clicking bifunctional Pt(IV) anticancer drugs to isocyanates. Biomacromol 11, 2290–2299 (2010)

    Article  CAS  Google Scholar 

  19. Graf, N., Bielenberg, D.R., Kolishetti, N., Muus, C., Banyard, J., Farokhzad, O.C., Lippard, S.J.: αVβ3 integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS Nano 6, 4530–4539 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, J., Yap, S.Q., Chin, C.F., Tian, Q., Yoong, S.L., Pastorin, G., Ang, W.H.: Platinum(IV) prodrugs entrapped within multiwalled carbon nanotubes: selective release by chemical reduction and hydrophobicity reversal. Chem. Sci. 3, 2083–2087 (2012)

    Article  CAS  Google Scholar 

  21. Pichler, V., Valiahdi, S.M., Jakupec, M.A., Arion, V.B., Galanski, M., Keppler, B.K.: Mono-carboxylated diaminedichloridoplatinum (IV) complexes—selective synthesis, characterization, and cytotoxicity. Dalton Trans. 40, 8187–8192 (2011)

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, J.Z., Bonnitcha, P., Wexselblatt, E., Klein, A.V., Najajreh, Y., Gibson, D., Hambley, T.W.: Facile preparation of mono-, di- and mixed-carboxylato platinum(IV) complexes for versatile anticancer prodrug design. Chem. Eur. J. 19, 1672–1676 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. Wong, D.Y.Q., Lau, J.Y., Ang, W.H.: Harnessing chemoselective imine ligation for tethering bioactive molecules to platinum(iv) prodrugs. Dalton Trans. 41, 6104–6111 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. Shi, Y., Liu, S.-A., Kerwood, D.J., Goodisman, J., Dabrowiak, J.C.: Pt(IV) complexes as prodrugs for cisplatin. J. Inorg. Biochem. 107, 6–14 (2012)

    Article  CAS  PubMed  Google Scholar 

  25. Blatter, E.E., Vollano, J.F., Krishnan, B.S., Dabrowiak, J.C.: Interaction of the antitumor agents cis, cis, trans-Pt(IV)(NH3)2Cl2(OH)2 and cis, cis, trans-Pt(IV)[(CH3)2CHNH2]2Cl2(OH)2 and their reduction products with PM2 DNA. Biochemistry 23, 4817–4820 (1984)

    Article  CAS  PubMed  Google Scholar 

  26. Nygren, Y., Hemstrom, P., Astot, C., Naredi, P., Bjorn, E.: Hydrophilic interaction liquid chromatography (HILIC) coupled to inductively coupled plasma mass spectrometry (ICPMS) utilizing a mobile phase with a low-volatile organic modifier for the determination of cisplatin, and its monohydrolyzed metabolite. J. Anal. At. Spectrom. 23, 948–954 (2008)

    Article  CAS  Google Scholar 

  27. Falta, T., Koellensperger, G., Standler, A., Buchberger, W., Mader, R.M., Hann, S.: Quantification of cisplatin, carboplatin and oxaliplatin in spiked human plasma samples by ICP-SFMS and hydrophilic interaction liquid chromatography (HILIC) combined with ICP-MS detection. J. Anal. At. Spectrom. 24, 1336–1342 (2009)

    Article  CAS  Google Scholar 

  28. Kasherman, Y., Sturup, S., Gibson, D.: Is glutathione the major cellular target of cisplatin? a study of the interactions of cisplatin with cancer cell extracts. J. Med. Chem. 52, 4319–4328 (2009)

    Article  CAS  PubMed  Google Scholar 

  29. Hermann, G., Heffeter, P., Falta, T., Berger, W., Hann, S., Koellensperger, G.: In vitro studies on cisplatin focusing on kinetic aspects of intracellular chemistry by LC-ICP-MS. Metallomics 5, 636–647 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. Carr, J., Tingle, M., McKeage, M.: Rapid biotransformation of satraplatin by human red blood cells in vitro. Cancer Chemother. Pharmacol. 50, 9–15 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. Hann, S., Koellensperger, G., Stefanka, Z., Stingeder, G., Furhacker, M., Buchberger, W., Mader, R.M.: Application of HPLC-ICP-MS to speciation of cisplatin and its degradation products in water containing different chloride concentrations and in human urine. J. Anal. At. Spectrom. 18, 1391–1395 (2003)

    Article  CAS  Google Scholar 

  32. Deutsch, J.C.: Dehydroascorbic acid. J. Chromatogr. A 881, 299–307 (2000)

    Article  CAS  PubMed  Google Scholar 

  33. Ellis, L., Er, H., Hambley, T.: The influence of the axial ligands of a series of platinum(IV) anti-cancer complexes on their reduction to platinum(II) and reaction with DNA. Aust. J. Chem. 48, 793–806 (1995)

    Article  CAS  Google Scholar 

  34. Choi, S., Filotto, C., Bisanzo, M., Delaney, S., Lagasee, D., Whitworth, J.L., Jusko, A., Li, C., Wood, N.A., Willingham, J., Schwenker, A., Spaulding, K.: Reduction and anticancer activity of platinum(IV) complexes. Inorg. Chem. 37, 2500–2504 (1998)

    Article  CAS  Google Scholar 

  35. Lemma, K., Sargeson, A.M., Elding, L.I.: Kinetics and mechanism for reduction of oral anticancer platinum(IV) dicarboxylate compounds by L-ascorbate ions. J. Chem. Soc. Dalton Trans. 7, 1167–1172 (2000)

    Article  Google Scholar 

  36. Pichler, V., Heffeter, P., Valiahdi, S.M., Kowol, C.R., Egger, A., Berger, W., Jakupec, M.A., Galanski, M., Keppler, B.K.: Unsymmetric mono- and dinuclear platinum(IV) complexes featuring an ethylene glycol moiety: synthesis, characterization, and biological activity. J. Med. Chem. 55, 11052–11061 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, J.Z., Wexselblatt, E., Hambley, T.W., Gibson, D.: Pt(iv) analogs of oxaliplatin that do not follow the expected correlation between electrochemical reduction potential and rate of reduction by ascorbate. Chem. Commun. 48, 847–849 (2012)

    Article  CAS  Google Scholar 

  38. Dhara, S.C.: A rapid method for the synthesis of cis-[Pt(NH3)2Cl2]. Indian J. Chem. 8, 193–194 (1970)

    Google Scholar 

  39. Kuroda, R., Ismail, I.M., Sadler, P.J.: X-ray and NMR studies of trans-dihydroxo-platinum(IV) antitumor complexes. J. Inorg. Biochem. 22, 103–117 (1984)

    Article  CAS  PubMed  Google Scholar 

  40. Phillips, J.A., Morgan, E.L., Dong, Y., Cole, G.T., McMahan, C., Hung, C.-Y., Sanderson, S.D.: Single-step conjugation of bioactive peptides to proteins via a self-contained succinimidyl bis-arylhydrazone. Bioconjug. Chem. 20, 1950–1957 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Yuan Qiang Wong .

Supplementary Information

Supplementary Information

Synthesis of cis-diamminechloro(4-formylbenzoate) platinum(II). Pt(NH3)2(Cl)2 (50 mg, 0.167 mmol) and AgNO3 (26.89 mg, 0.158 mmol) was stirred vigorously in H2O (1 mL), heated at 40 °C for 2 h. The reaction suspension was filtered using a syringe filter to give a clear filtrate. Sodium formylbenzoate (31.55 mg, 0.183 mmol) was added to the filtrate and the reaction mixture was heated at 40 °C for 5 h. The resulting yellowish-white ppt was washed with H2O (3 × 1 mL). At this stage, the pale-green crude product contained a mixture of bis-acylated cis-diamminebis(4-formylbenzoate) platinum(II) and the desired mono-acylated cis-diamminechloro(4-formylbenzoate) platinum(II). This was then dissolved in 70% MeCN/H2O and purified by semi-preparative HPLC Figs. S3.1, S3.2.

Fig. S3.1
figure 6

Semi-preparative trace of the crude Pt(II)(NH3)2(Cl)(carboxylbenzaldehyde). The desired product is at 16.9 min

Fig. S3.2
figure 7

ESI-MS of the isolated Pt(II)(NH3)2(Cl)(carboxylbenzaldehyde). m/z 411.8 [M−H]

Fig. S3.3
figure 8

Aquation of cisplatin to form an unidentified product. HILIC chromatograms of a cisplatin in PBS (containing 139 mM Cl) after leaving to stand and b cisplatin in 50 mM phosphate buffer pH 7 (without Cl) after 1 h, c the DAD-UV-vis spectrum of the peak at 15.6 min showed an absence of any chromophores, excluding the possibility that it was a reduction product containing a carboxylbenzaldehyde moiety since the latter has a characteristic absorbance at 258 nm

Fig. S3.4
figure 9

Left and right: HILIC (230 nm) and RPLC (214 nm) chromatograms respectively of the reduction of 2 by 2–4 mM ascorbic acid. Legend: a 4-carboxylbenzaldehyde, b 2, c dehydroascorbic acid, d ascorbic acid, e cisplatin

Fig. S3.5
figure 10

Representative calibration curves. A fresh calibration curve was plotted per experiment. Top row: Calibration curves for cisplatin and 1 respectively at 230 and 305 nm. Bottom row: Calibration curve for JM118 and satraplatin respectively at 214 nm

Measurement of maximum aqueous kinetic solubility in PBS. Solid samples of 1, 2 and satraplatin were continuously added to PBS (pH 7.4) with sonication for about 20 min until the point of turbidity. The suspension was then syringe-filtered to obtain the corresponding saturated solution. Maximum solubility was then determined by ICP-OES. Experiment was repeated in duplicates (Table S3.1).

Table S3.1 Maximum solubility of 1 and 2 and satraplatin in PBS (pH 7.4). Values are reported as mean with standard error

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wong, D.Y.Q. (2018). Probing the Platinum(IV) Prodrug Hypothesis. Are Platinum(IV) Complexes Really Prodrugs of Cisplatin?. In: Rethinking Platinum Anticancer Drug Design: Towards Targeted and Immuno-chemotherapeutic Approaches. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-10-8594-9_3

Download citation

Publish with us

Policies and ethics