Advertisement

Introduction

Cisplatin—Now and Future
  • Daniel Yuan Qiang WongEmail author
Chapter
  • 284 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Cancer has been a leading cause of mortality both globally and locally, with increasing incidence rates as a consequence of an aging population, environmental factors and lifestyle choices (Teo and Soo in Jpn J Clin Oncol, 43:219–224, 2013 [1]). The life-time risk of cancer has been estimated to be over 1 in 3 persons (Sasieni and Shelton in Br J Cancer, 105:460–465, 2011 [2]). Worldwide, there are appx. 6 million cancer-related deaths annually, a figure which is expected to nearly treble to appx.

References

  1. 1.
    Teo, M.C.C., Soo, K.C.: Cancer trends and incidences in Singapore. Jpn. J. Clin. Oncol. 43, 219–224 (2013)PubMedCrossRefGoogle Scholar
  2. 2.
    Sasieni, P.D., Shelton, J., Ormiston-Smith, N., Thomson, C.S., Silcocks, P.B.: What is the lifetime risk of developing cancer?: the effect of adjusting for multiple primaries. Br. J. Cancer 105, 460–465 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Ramsey, S.D.: How should we value lives lost to cancer? J. Natl Cancer Inst. 100, 1742–1743 (2008)PubMedCrossRefGoogle Scholar
  4. 4.
    DeVita, V.T., Rosenberg, S.A.: Two hundred years of cancer research. N. Engl. J. Med. 366, 2207–2214 (2012)PubMedCrossRefGoogle Scholar
  5. 5.
    Agarwal, S., Pappas, L., Neumayer, L., Kokeny, K., Agarwal, J.: Effect of breast conservation therapy vs mastectomy on disease-specific survival for early-stage breast cancer. JAMA Surg. 149, 267–274 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Mehlen, P., Puisieux, A.: Metastasis: a question of life or death. Nat. Rev. Cancer 6, 449–458 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Couzin-Frankel, J.: Cancer Immunotherapy. Science 342, 1432–1433 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Hall, M.D., Mellor, H.R., Callaghan, R., Hambley, T.W.: Basis for design and development of platinum(IV) anticancer complexes. J. Med. Chem. 50, 3403–3411 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Hall, M.D., Hambley, T.W.: Platinum(IV) antitumour compounds: their bioinorganic chemistry. Coord. Chem. Rev. 232, 49–67 (2002)CrossRefGoogle Scholar
  10. 10.
    Chin, C.F., Wong, D.Y.Q., Jothibasu, R., Ang, W.H.: Anticancer platinum(IV) prodrugs with novel modes of activity. Curr. Top. Med. Chem. 11, 2602–2612 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Wheate, N.J., Walker, S., Craig, G.E., Oun, R.: The status of platinum anticancer drugs in the clinic and in clinical trials. Dalton Trans. 39, 8113–8127 (2010)PubMedCrossRefGoogle Scholar
  12. 12.
    Galanski, M., Jakupec, M.A., Keppler, B.K.: Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr. Med. Chem. 12, 2075–2094 (2005)CrossRefPubMedGoogle Scholar
  13. 13.
    Kelland, L.: The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007)CrossRefPubMedGoogle Scholar
  14. 14.
    Abu-Surrah, A.S., Kettunen, M.: Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem. 13, 1337–1357 (2006)CrossRefPubMedGoogle Scholar
  15. 15.
    Alderden, R.A., Hall, M.D., Hambley, T.W.: The discovery and development of cisplatin. J. Chem. Educ. 83, 728 (2006)CrossRefGoogle Scholar
  16. 16.
    Rosenberg, B.: Platinum complexes for the treatment of cancer. Interdiscip. Sci. Rev. 3, 134–147 (1978)CrossRefGoogle Scholar
  17. 17.
    Abu-Surrah, A.S., Kettunen, M.: Platinum group antitumor chemistry: design and development of new anticancer drugs complementary to cisplatin. Curr. Med. Chem. 13, 1337–1357 (2006)CrossRefPubMedGoogle Scholar
  18. 18.
    Weiss, R.B., Christian, M.C.: New cisplatin analogues in development: a review. Drugs 46, 360–377 (1993)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Montana, A.M., Batalla, C.: The rational design of anticancer platinum complexes: the importance of the structure-activity relationship. Curr. Med. Chem. 16, 2235–2260 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Todd, R.C., Lippard, S.J.: Inhibition of transcription by platinum antitumor compounds. Metallomics 1, 280–291 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Nitiss, J.L.: A copper connection to the uptake of platinum anticancer drugs. Proc. Natl. Acad. Sci. U. S. A. 99, 13963–13965 (2002)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Harrach, S., Ciarimboli, G.: Role of transporters in the distribution of platinum-based drugs. Front. Pharmacol. 6 (2015)Google Scholar
  23. 23.
    Zhang, S., Lovejoy, K.S., Shima, J.E., Lagpacan, L.L., Shu, Y., Lapuk, A., Chen, Y., Komori, T., Gray, J.W., Chen, X., Lippard, S.J., Giacomini, K.M.: Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 66, 8847–8857 (2006)PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Eastman, A.: The mechanism of action of cisplatin: from adducts to apoptosis. In: Bernhard, L. (ed.) Cisplatin, pp. 111–134 (2006)CrossRefGoogle Scholar
  25. 25.
    Jamieson, E.R., Lippard, S.J.: Structure, recognition, and processing of cisplatin-DNA adducts. Chem. Rev. 99, 2467–2498 (1999)PubMedCrossRefGoogle Scholar
  26. 26.
    Legendre, F., Chottard, J.-C.: Kinetics and selectivity of DNA-platination. In: Bernhard, L (ed.) Cisplatin, pp. 223–245 (2006)CrossRefGoogle Scholar
  27. 27.
    Pil, P., Lippard, S.: Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin. Science 256, 234–237 (1992)PubMedCrossRefGoogle Scholar
  28. 28.
    Zamble, D.B., Mu, D., Reardon, J.T., Sancar, A., Lippard, S.J.: Repair of cisplatin–DNA adducts by the mammalian excision nucleases. Biochemistry 35, 10004–10013 (1996)PubMedCrossRefGoogle Scholar
  29. 29.
    Fichtinger-Schepman, A.M.J., Van der Veer, J.L., Den Hartog, J.H.J., Lohman, P.H.M., Reedijk, J.: Adducts of the antitumor drug cis-diamminedichloroplatinum(II) with DNA: formation, identification, and quantitation. Biochemistry 24, 707–713 (1985)PubMedCrossRefGoogle Scholar
  30. 30.
    Jamieson, E.R., Lippard, S.J.: Structure, recognition, and processing of cisplatin–DNA adducts. Chem. Rev. 99, 2467–2498 (1999)PubMedCrossRefGoogle Scholar
  31. 31.
    Eguchi, Y., Shimizu, S., Tsujimoto, Y.: Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 57, 1835–1840 (1997)PubMedPubMedCentralGoogle Scholar
  32. 32.
    Gonzalez, V.M., Fuertes, M.A., Alonso, C., Perez, J.M.: Is cisplatin-induced cell death always produced by apoptosis? Mol. Pharmacol. 59, 657–663 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wang, D., Lippard, S.J.: Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005)CrossRefPubMedGoogle Scholar
  34. 34.
    Peleg-Shulman, T., Gibson, D.: Cisplatin–protein adducts are efficiently removed by glutathione but not by 5-guanosine monophosphate. J. Am. Chem. Soc. 123, 3171–3172 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Soti, C., Racz, A., Csermely, P.: A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90. J. Biol. Chem. 277, 7066–7075 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Cullen, K., Yang, Z., Schumaker, L., Guo, Z.: Mitochondria as a critical target of the chemotheraputic agent cisplatin in head and neck cancer. J. Bioenerg. Biomembr. 39, 43–50 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Chapman, E.G., DeRose, V.J.: Enzymatic processing of platinated RNAs. J. Am. Chem. Soc. 132, 1946–1952 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Gibson, D.: The mechanism of action of platinum anticancer agents—what do we really know about it? Dalton Trans. 10681–10689 (2009)Google Scholar
  39. 39.
    Sheikh-Hamad, D.: Cisplatin-induced cytoxicity: is the nucleus relevant? Am. J. Physiol. Renal Physiol. 295, F42–F43 (2008)PubMedCrossRefGoogle Scholar
  40. 40.
    Yu, F., Megyesi, J., Price, P.M.: Cytoplasmic initiation of cisplatin cytotoxicity. Am. J. Physiol. Renal Physiol. 295, F44–F52 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wang, X., Guo, Z.: Towards the rational design of platinum(ii) and gold(iii) complexes as antitumour agents. Dalton Trans. 1521–1532 (2008)Google Scholar
  42. 42.
    Jung, Y., Lippard, S.J.: Direct cellular responses to platinum-induced DNA damage. Chem. Rev. 107, 1387–1407 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Galanski, M., Keppler, B.K.: Searching for the magic bullet: anticancer platinum drugs which can be accumulated or activated in the tumor tissue. Anticancer Agents Med. Chem. 7, 55–73 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    McWhinney, S.R., Goldberg, R.M., McLeod, H.L.: Platinum neurotoxicity pharmacogenetics. Mol. Cancer Ther. 8, 10–16 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Pabla, N., Dong, Z.: Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int. 73, 994–1007 (2008)PubMedCrossRefGoogle Scholar
  46. 46.
    Ozkok, A., Edelstein, C.L.: Pathophysiology of cisplatin-induced acute kidney injury. Biomed. Res. Int. 2014, 17 (2014)CrossRefGoogle Scholar
  47. 47.
    Screnci, D., McKeage, M.J.: Platinum neurotoxicity: clinical profiles, experimental models and neuroprotective approaches. J. Inorg. Biochem. 77, 105–110 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Siddik, Z.H.: Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22, 7265–7279 (2003)CrossRefPubMedGoogle Scholar
  49. 49.
    Samimi, G., Varki, N.M., Wilczynski, S., Safaei, R., Alberts, D.S., Howell, S.B.: Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clin. Cancer Res. 9, 5853–5859 (2003)PubMedPubMedCentralGoogle Scholar
  50. 50.
    Samimi, G., Safaei, R., Katano, K., Holzer, A.K., Rochdi, M., Tomioka, M., Goodman, M., Howell, S.B.: Increased expression of the copper efflux transporter ATP7A mediates resistance to cisplatin, carboplatin, and oxaliplatin in ovarian cancer cells. Clin. Cancer Res. 10, 4661–4669 (2004)PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Wang, X., Guo, Z.: The role of sulfur in platinum anticancer chemotherapy. Anti-Cancer Agents Med. Chem. 7, 19–34 (2007)CrossRefGoogle Scholar
  52. 52.
    Dolman, R.C., Deacon, G.B., Hambley, T.W.: Studies of the binding of a series of platinum(IV) complexes to plasma proteins. J. Inorg. Biochem. 88, 260–267 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Shah, M.A., Schwartz, G.K.: Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin. Cancer Res. 7, 2168–2181 (2001)PubMedGoogle Scholar
  54. 54.
    Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A.C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., Swanton, C.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Wilson, J.J., Lippard, S.J.: Synthetic methods for the preparation of platinum anticancer complexes. Chem. Rev. 114, 4470–4495 (2014)PubMedCrossRefGoogle Scholar
  56. 56.
    Collins, I., Workman, P.: New approaches to molecular cancer therapeutics. Nat. Chem. Biol. 2, 689–700 (2006)PubMedCrossRefGoogle Scholar
  57. 57.
    Izar, B., Rotow, J., Gainor, J., Clark, J., Chabner, B.: Pharmacokinetics, clinical indications, and resistance mechanisms in molecular targeted therapies in cancer. Pharmacol. Rev. 65, 1351–1395 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Iqbal, N., Iqbal, N.: Imatinib: a breakthrough of targeted therapy in cancer. Chemother. Res. Pract. 2014, 9 (2014)Google Scholar
  59. 59.
    Lebwohl, D., Canetta, R.: Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur. J. Cancer 34, 1522–1534 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    O’Dwyer, P.J., Stevenson, J.P., Johnson, S.W.: Clinical status of cisplatin, carboplatin, and other platinum-based antitumor drugs. In: Bernhard L (ed.) Cisplatin, pp. 29–69 (2006)Google Scholar
  61. 61.
    Chen, Z., Fillmore, C.M., Hammerman, P.S., Kim, C.F., Wong, K.-K.: Non-small-cell lung cancers: a heterogeneous set of diseases. Nat. Rev. Cancer 14, 535–546 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Gerlinger, M., Rowan, A.J., Horswell, S., Larkin, J., Endesfelder, D., Gronroos, E., Martinez, P., Matthews, N., Stewart, A., Tarpey, P., Varela, I., Phillimore, B., Begum, S., McDonald, N.Q., Butler, A., Jones, D., Raine, K., Latimer, C., Santos, C.R., Nohadani, M., Eklund, A.C., Spencer-Dene, B., Clark, G., Pickering, L., Stamp, G., Gore, M., Szallasi, Z., Downward, J., Futreal, P.A., Swanton, C.: Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl. J. Med. 366, 883–892 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Fuertes, M.A., Alonso, C., Perez, J.M.: Biochemical modulation of Cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem. Rev. 103, 645–662 (2003)CrossRefPubMedGoogle Scholar
  64. 64.
    Wang, D., Lippard, S.J.: Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005)CrossRefPubMedGoogle Scholar
  65. 65.
    Lemma, K., Sargeson, A.M., Elding, L.I.: Kinetics and mechanism for reduction of oral anticancer platinum(IV) dicarboxylate compounds by l-ascorbate ions. J. Chem. Soc., Dalton Trans. 1167–1172 (2000)Google Scholar
  66. 66.
    Clarke, M.J., Sadler, P.J., Alessio, E.: Metallopharmaceuticals: DNA interactions. Springer, Berlin (1999)Google Scholar
  67. 67.
    Berners-Price, S.J., Ronconi, L., Sadler, P.J.: Insights into the mechanism of action of platinum anticancer drugs from multinuclear NMR spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 49, 65–98 (2006)CrossRefGoogle Scholar
  68. 68.
    Nováková, O., Vrána, O., Kiseleva, V.I., Brabec, V.: DNA interactions of antitumor platinum(IV) complexes. Eur. J. Biochem. 228, 616–624 (1995)PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Roat, R.M., Reedijk, J.: Reaction of mer-trichloro (diethylenetriamine)platmum(IV) chloride, (mer-[Pt(dien)Cl3]Cl), with purine nucleosides and nucleotides results in formation of platinum(II) as well as platinum(IV) complexes. J. Inorg. Biochem. 52, 263–274 (1993)CrossRefGoogle Scholar
  70. 70.
    Rotondo, E., Fimiani, V., Cavallaro, A., Ainis, T.: Does the antitumoral activity of platinum(IV) derivatives result from their in vivo reduction? Tumori 69, 31–36 (1983)PubMedCrossRefGoogle Scholar
  71. 71.
    Tito, F., Nick, F., Waldo, O., Hideyuki, T., John, W., Timothy, G.M.: Identification of non-cross-resistant platinum compounds with novel cytotoxicity profiles using the NCI anticancer drug screen and clustered image map visualizations. Crit. Rev. Oncol. Hematol. 53, 25–34 (2005)CrossRefGoogle Scholar
  72. 72.
    Aris, S.M., Farrell, N.P.: Towards antitumor active trans-platinum compounds. Eur. J. Inorg. Chem. 2009, 1293–1302 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Giandomenico, C.M., Abrams, M.J., Murrer, B.A., Vollano, J.F., Rheinheimer, M.I., Wyer, S.B., Bossard, G.E., Higgins, J.D.: Carboxylation of kinetically inert platinum(IV) hydroxy complexes. An entree into orally active platinum(IV) antitumor agents. Inorg. Chem. 34, 1015–1021 (1995)CrossRefPubMedGoogle Scholar
  74. 74.
    Galanski, M., Keppler, B.K.: Carboxylation of dihydroxoplatinum(IV) complexes via a new synthetic pathway. Inorg. Chem. 35, 1709–1711 (1996)CrossRefPubMedGoogle Scholar
  75. 75.
    Galanski, M., Keppler, B.K.: Carboxylation of dihydroxoplatinum(IV) complexes with acyl chlorides. Crystal structures of the trans-R, R- and trans-S, S-isomer of (OC-6-33)-bis(1-adamantanecarboxylato)-(cyclohexane-1,2-diamine)dichloroplatinum(IV). Inorg. Chim. Acta 265, 271–274 (1997)CrossRefGoogle Scholar
  76. 76.
    Lee, E.J., Jun, M.-J., Lee, S.S., Sohn, Y.S.: Synthesis, structure, and properties of isopropylidenemalonatoplatinum(IV) complexes. Polyhedron 16, 2421–2428 (1997)CrossRefGoogle Scholar
  77. 77.
    Ali, M.S., Ali Khan, S.R., Ojima, H., Guzman, I.Y., Whitmire, K.H., Siddik, Z.H., Khokhar, A.R.: Model platinum nucleobase and nucleoside complexes and antitumor activity: X-ray crystal structure of [PtIV(trans-1R,2R-diaminocyclohexane)trans-(acetate)2(9-ethylguanine)Cl]NO3·H2O. J. Inorg. Biochem. 99, 795–804 (2005)CrossRefPubMedGoogle Scholar
  78. 78.
    Hambley, T.W., Battle, A.R., Deacon, G.B., Lawrenz, E.T., Fallon, G.D., Gatehouse, B.M., Webster, L.K., Rainone, S.: Modifying the properties of platinum(IV) complexes in order to increase biological effectiveness. J. Inorg. Biochem. 77, 3–12 (1999)CrossRefPubMedGoogle Scholar
  79. 79.
    Zhang, J.Z., Bonnitcha, P., Wexselblatt, E., Klein, A.V., Najajreh, Y., Gibson, D., Hambley, T.W.: Facile preparation of mono-, di- and mixed-carboxylato platinum(IV) complexes for versatile anticancer prodrug design. Chem. Eur. J. 19, 1672–1676 (2013)CrossRefPubMedGoogle Scholar
  80. 80.
    Lee, Y.-A., Jung, O.-S.: Synthesis and characterization of stable bis(methoxo)platinum(IV) complexes. A facile synthesis via fluorenylidene-philic interactions. Bull. Chem. Soc. Jpn 75, 1533–1537 (2002)CrossRefGoogle Scholar
  81. 81.
    Lee, Y.-A., Ho Yoo, K., Jung, O.-S.: Oxidation of Pt(II) to Pt(IV) complex with hydrogen peroxide in glycols. Inorg. Chem. Commun. 6, 249–251 (2003)CrossRefGoogle Scholar
  82. 82.
    Feazell, R.P., Nakayama-Ratchford, N., Dai, H., Lippard, S.J.: Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc. 129, 8438–8439 (2007)PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kauffman, G.B., Slusarczuk, G., Kirschner, S.: cis and trans-Tetrachlorodiammineplatinum(IV). In: Jacob, K. (ed.) Inorganic synthesis, pp. 236–238 (2007)Google Scholar
  84. 84.
    Ellis, L., Er, H., Hambley, T.: The influence of the axial ligands of a series of platinum(IV) anti-cancer complexes on their reduction to platinum(II) and reaction with DNA. Aust. J. Chem. 48, 793–806 (1995)CrossRefGoogle Scholar
  85. 85.
    Kizu, R., Nakanishi, T., Hayakawa, K., Matsuzawa, A., Eriguchi, M., Takeda, Y., Akiyama, N., Tashiro, T., Kidani, Y.: A new orally active antitumor 1R,2R-cyclohexanediamine-platinum(IV) complex: trans-(n-valerato)chloro(1R,2R-cyclohexanediamine) (oxalato)platinum(IV). Cancer Chemother. Pharmacol. 43, 97–105 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Barnes, K.R., Kutikov, A., Lippard, S.J.: Synthesis, characterization, and cytotoxicity of a series of estrogen-tethered platinum(IV) complexes. Chem. Biol. 11, 557–564 (2004)CrossRefPubMedGoogle Scholar
  87. 87.
    Ang, W.H., Pilet, S., Scopelliti, R., Bussy, F., Juillerat-Jeanneret, L., Dyson, P.J.: Synthesis and characterization of platinum(IV) anticancer drugs with functionalized aromatic carboxylate ligands: influence of the ligands on drug efficacies and uptake. J. Med. Chem. 48, 8060–8069 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Perez, J.M., Camazón, M., Alvarez-Valdes, A., Quiroga, A.G., Kelland, L.R., Alonso, C., Navarro-Ranninger, M.C.: Synthesis, characterization and DNA modification induced by a novel Pt(IV)-bis(monoglutarate) complex which induces apoptosis in glioma cells. Chem-Biol. Interact. 117, 99–115 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Reithofer, M., Galanski, M., Roller, A., Keppler, B.K.: An entry to novel platinum complexes: carboxylation of dihydroxoplatinum(IV) complexes with succinic anhydride and subsequent derivatization. Eur. J. Inorg. Chem. 2006, 2612–2617 (2006)CrossRefGoogle Scholar
  90. 90.
    Reithofer, M.R., Valiahdi, S.M., Jakupec, M.A., Arion, V.B., Egger, A., Galanski, M., Keppler, B.K.: Novel di- and tetracarboxylatoplatinum(IV) complexes. Synthesis, characterization, cytotoxic activity, and DNA platination. J. Med. Chem. 50, 6692–6699 (2007)CrossRefPubMedGoogle Scholar
  91. 91.
    Chin, C.F., Tian, Q., Setyawati, M.I., Fang, W., Tan, E.S.Q., Leong, D.T., Ang, W.H.: Tuning the activity of platinum(IV) anticancer complexes through asymmetric acylation. J. Med. Chem. 55, 7571–7582 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wong, D.Y.Q., Lim, J.H., Ang, W.H.: Induction of targeted necrosis with HER2-targeted platinum(IV) anticancer prodrugs. Chem. Sci. 6, 3051–3056 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Wong, D.Y.Q., Yeo, C.H.F., Ang, W.H.: Immuno-chemotherapeutic platinum(IV) prodrugs of cisplatin as multimodal anticancer agents. Angew. Chem. Int. Ed. 53, 6752–6756 (2014)CrossRefGoogle Scholar
  94. 94.
    Song, R., Kim, K.M., Sohn, Y.S.: Synthesis and characterization of novel tricarboxylatoplatinum(IV) complexes. Nucleophilic substitution of (diamine)-tetrahydroxoplatinum(IV) with carboxylic acid. Inorg. Chim. Acta 338, 89–93 (2002)CrossRefGoogle Scholar
  95. 95.
    Ang, W.H., Khalaila, I., Allardyce, C.S., Juillerat-Jeanneret, L., Dyson, P.J.: Rational design of platinum(IV) compounds to overcome glutathione-S-transferase mediated drug resistance. J. Am. Chem. Soc. 127, 1382–1383 (2005)CrossRefPubMedGoogle Scholar
  96. 96.
    Dhar, S., Lippard, S.J.: Mitaplatin, a potent fusion of cisplatin and the orphan drug dichloroacetate. Proc. Natl. Acad. Sci. U. S. A. 106, 22199–22204 (2009)PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Carr, J., Tingle, M., McKeage, M.: Rapid biotransformation of satraplatin by human red blood cells in vitro. Cancer Chemother. Pharmacol. 50, 9–15 (2002)CrossRefPubMedGoogle Scholar
  98. 98.
    Mukhopadhyay, S., Barnes, C.M., Haskel, A., Short, S.M., Barnes, K.R., Lippard, S.J.: Conjugated platinum(IV) peptide complexes for targeting angiogenic tumor vasculature. Bioconjugate Chem. 19, 39–49 (2007)CrossRefGoogle Scholar
  99. 99.
    Bednarski, P.J., Grünert, R., Zielzki, M., Wellner, A., Mackay, F.S., Sadler, P.J.: Light-activated destruction of cancer cell nuclei by platinum diazide complexes. Chem. Biol. 13, 61–67 (2006)PubMedCrossRefGoogle Scholar
  100. 100.
    Mackay, F.S., Woods, J.A., Moseley, H., Ferguson, J., Dawson, A., Parsons, S., Sadler, P.J.: A photoactivated trans-diammine platinum complex as cytotoxic as cisplatin. Chem. Eur. J. 12, 3155–3161 (2006)PubMedCrossRefGoogle Scholar
  101. 101.
    Mackay, F.S., Moggach, S.A., Collins, A., Parsons, S., Sadler, P.J.: Photoactive trans ammine/amine diazido platinum(IV) complexes. Inorg. Chim. Acta 362, 811–819 (2009)CrossRefGoogle Scholar
  102. 102.
    Hall, M.D., Foran, G.J., Zhang, M., Beale, P.J., Hambley, T.W.: XANES determination of the platinum oxidation state distribution in cancer cells treated with platinum(IV) anticancer agents. J. Am. Chem. Soc. 125, 7524–7525 (2003)PubMedCrossRefGoogle Scholar
  103. 103.
    Hall, M., Dillon, C., Zhang, M., Beale, P., Cai, Z., Lai, B., Stampfl, A.J., Hambley, T.: The cellular distribution and oxidation state of platinum(II) and platinum(IV) antitumour complexes in cancer cells. J. Biol. Inorg. Chem. 8, 726–732 (2003)PubMedCrossRefGoogle Scholar
  104. 104.
    Hall, M.D., Alderden, R.A., Zhang, M., Beale, P.J., Cai, Z., Lai, B., Stampfl, A.P.J., Hambley, T.W.: The fate of platinum(II) and platinum(IV) anti-cancer agents in cancer cells and tumours. J. Struct. Biol. 155, 38–44 (2006)PubMedCrossRefGoogle Scholar
  105. 105.
    New, E.J., Duan, R., Zhang, J.Z., Hambley, T.W.: Investigations using fluorescent ligands to monitor platinum(IV) reduction and platinum(II) reactions in cancer cells. Dalton Trans. 3092–3101 (2009)Google Scholar
  106. 106.
    Chaney, S.G., Wyrick, S., Till, G.K.: In vitro biotransformations of tetrachloro(d, l-trans)-1,2-diaminocyclohexaneplatinum(IV) (tetraplatin) in rat plasma. Cancer Res. 50, 4539–4545 (1990)PubMedGoogle Scholar
  107. 107.
    Carr, J., Tingle, M., McKeage, M.: Satraplatin activation by haemoglobin, cytochrome C and liver microsomes in vitro. Cancer Chemother. Pharmacol. 57, 483–490 (2006)CrossRefPubMedGoogle Scholar
  108. 108.
    Galanski, M., Jakupec, M.A., Keppler, B.K.: Update of the preclinical situation of anticancer platinum complexes: novel design strategies and innovative analytical approaches. Curr. Med. Chem. 12, 2075–2094 (2005)CrossRefPubMedGoogle Scholar
  109. 109.
    Choi, S., Filotto, C., Bisanzo, M., Delaney, S., Lagasee, D., Whitworth, J.L., Jusko, A., Li, C., Wood, N.A., Willingham, J., Schwenker, A., Spaulding, K.: Reduction and anticancer activity of platinum(IV) complexes. Inorg. Chem. 37, 2500–2504 (1998)CrossRefGoogle Scholar
  110. 110.
    Kwon, Y.-E., Whang, K.-J., Park, Y.-J., Kim, K.H.: Synthesis, characterization and antitumor activity of novel octahedral Pt(IV) complexes. Bioorg. Med. Chem. 11, 1669–1676 (2003)PubMedCrossRefGoogle Scholar
  111. 111.
    Dhar, S., Gu, F.X., Langer, R., Farokhzad, O.C., Lippard, S.J.: Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 105, 17356–17361 (2008)PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Lake, R.A., Robinson, B.W.S.: Immunotherapy and chemotherapy—a practical partnership. Nat. Rev. Cancer 5, 397–405 (2005)CrossRefPubMedGoogle Scholar
  113. 113.
    Galluzzi, L., Senovilla, L., Zitvogel, L., Kroemer, G.: The secret ally: immunostimulation by anticancer drugs. Nat. Rev. Drug Discov. 11, 215–233 (2012)CrossRefPubMedGoogle Scholar
  114. 114.
    Zitvogel, L., Galluzzi, L., Smyth, M.J., Kroemer, G.: Mechanism of action of conventional and targeted anticancer therapies: reinstating immunosurveillance. Immunity 39, 74–88 (2013).CrossRefPubMedGoogle Scholar
  115. 115.
    Zitvogel, L., Apetoh, L., Ghiringhelli, F., Kroemer, G.: Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol. 8, 59–73 (2008)CrossRefPubMedGoogle Scholar
  116. 116.
    Lesterhuis, W.J., Haanen, J.B.A.G., Punt, C.J.A.: Cancer immunotherapy—revisited. Nat. Rev. Drug Discov. 10, 591–600 (2011)CrossRefPubMedGoogle Scholar
  117. 117.
    Krysko, D.V., Garg, A.D., Kaczmarek, A., Krysko, O., Agostinis, P., Vandenabeele, P.: Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer 12, 860–875 (2012)CrossRefPubMedGoogle Scholar
  118. 118.
    Mattarollo, S.R., Loi, S., Duret, H., Ma, Y., Zitvogel, L., Smyth, M.J.: Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res. 71, 4809–4820 (2011)CrossRefPubMedGoogle Scholar
  119. 119.
    Halama, N., Michel, S., Kloor, M., Zoernig, I., Benner, A., Spille, A., Pommerencke, T., von Knebel, D.M., Folprecht, G., Luber, B., Feyen, N., Martens, U.M., Beckhove, P., Gnjatic, S., Schirmacher, P., Herpel, E., Weitz, J., Grabe, N., Jaeger, D.: Localization and density of immune cells in the invasive margin of human colorectal cancer liver metastases are prognostic for response to chemotherapy. Cancer Res. 71, 5670–5677 (2011)CrossRefPubMedGoogle Scholar
  120. 120.
    Dieci, M.V., Criscitiello, C., Goubar, A., Viale, G., Conte, P., Guarneri, V., Ficarra, G., Mathieu, M.C., Delaloge, S., Curigliano, G., Andre, F.: Prognostic value of tumor-infiltrating lymphocytes on residual disease after primary chemotherapy for triple-negative breast cancer: a retrospective multicenter study. Ann. Oncol. 25, 611–618 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    de Biasi, A.R., Villena-Vargas, J., Adusumilli, P.S.: Cisplatin-Induced antitumor immunomodulation: a review of preclinical and clinical evidence. Clin. Cancer Res. 20, 5384–5391 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Wang, D., Lippard, S.J.: Cellular processing of platinum anticancer drugs. Nat. Rev. Drug Discov. 4, 307–320 (2005)CrossRefPubMedGoogle Scholar
  123. 123.
    Reed, E.: Cisplatin, carboplatin, and oxaliplatin. In: Chabner, B.A., Longo, D.L. (eds.) Cancer chemotherapy and biotherapy: principles and practice, 5th edn, pp. 333–341. Lippincott Williams & Wilkins, Philadelphia (2011)Google Scholar
  124. 124.
    Tesniere, A., Schlemmer, F., Boige, V., Kepp, O., Martins, I., Ghiringhelli, F., Aymeric, L., Michaud, M., Apetoh, L., Barault, L., Mendiboure, J., Pignon, J.P., Jooste, V., van Endert, P., Ducreux, M., Zitvogel, L., Piard, F., Kroemer, G.: Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene 29, 482–491 (2009)CrossRefPubMedGoogle Scholar
  125. 125.
    Merritt, R.E., Mahtabifard, A., Yamada, R.E., Crystal, R.G., Korst, R.J.: Cisplatin augments cytotoxic T-lymphocyte–mediated antitumor immunity in poorly immunogenic murine lung cancer. J. Thorac. Cardiovasc. Surg. 126, 1609–1617 (2003)CrossRefPubMedGoogle Scholar
  126. 126.
    Ramakrishnan, R., Assudani, D., Nagaraj, S., Hunter, T., Cho, H.-I., Antonia, S., Altiok, S., Celis, E., Gabrilovich, D.I.: Chemotherapy enhances tumor cell susceptibility to CTL-mediated killing during cancer immunotherapy in mice. J. Clin. Invest. 120, 1111–1124 (2010)PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Lesterhuis, W.J., Punt, C.J.A., Hato, S.V., Eleveld-Trancikova, D., Jansen, B.J.H., Nierkens, S., Schreibelt, G., de Boer, A., Van Herpen, C.M.L., Kaanders, J.H., van Krieken, J.H.J.M., Adema, G.J., Figdor, C.G., de Vries, I.J.M.: Platinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice. J. Clin. Invest. 121, 3100–3108 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kleinerman, E.S., Zwelling, L.A., Muchmore, A.V.: Enhancement of naturally occurring human spontaneous monocyte-mediated cytotoxicity by cis-diamminedichloroplatinum(II). Cancer Res. 40, 3099–3102 (1980)PubMedGoogle Scholar
  129. 129.
    Kleinerman, E., Howser, D., Young, R., Bull, J., Zwelling, L., Barlock, A., Decker, J., Muchmore, A.: Defective monocyte killing in patients with malignancies and restoration of function during chemotherapy. Lancet 316, 1102–1105 (1980)CrossRefGoogle Scholar
  130. 130.
    Lichtenstein, A.K., Pende, D.: Enhancement of natural killer cytotoxicity by cis-diamminedichloroplatinum(II) in vivo and in vitro. Cancer Res. 46, 639–644 (1986)PubMedGoogle Scholar
  131. 131.
    Son, K., Kim, Y.-M.: In vivo cisplatin-exposed macrophages increase immunostimulant-induced nitric oxide synthesis for tumor cell killing. Cancer Res. 55, 5524–5527 (1995)PubMedGoogle Scholar
  132. 132.
    Okamoto, M., Kasetani, H., Kaji, R., Goda, H., Ohe, G., Yoshida, H., Sato, M. and Kasatani, H.: cis-Diamminedichloroplatinum and 5-fluorouracil are potent inducers of the cytokines and natural killer cell activity in vivo and in vitro. Cancer Immunol. Immunother. 47, 233–241 (1998).CrossRefPubMedGoogle Scholar
  133. 133.
    Singh, R.A.K., Sodhi, A.: Antigen presentation by cisplatin-activated macrophages: role of soluble factor(s) and second messengers. Immunol. Cell Biol. 76, 513–519 (1998)CrossRefPubMedGoogle Scholar
  134. 134.
    Hu, J., Kinn, J., Zirakzadeh, A.A., Sherif, A., Norstedt, G., Wikström, A.C., Winqvist, O.: The effects of chemotherapeutic drugs on human monocyte-derived dendritic cell differentiation and antigen presentation. Clin. Exp. Immunol. 172, 490–499 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Chang, C.-L., Hsu, Y.-T., Wu, C.-C., Lai, Y.-Z., Wang, C., Yang, Y.-C., Wu, T.-C., Hung, C.-F.: Dose-dense chemotherapy improves mechanisms of antitumor immune response. Cancer Res. 73, 119–127 (2013)CrossRefPubMedGoogle Scholar
  136. 136.
    Taniguchi, K., Nishiura, H., Yamamoto, T.: Requirement of the acquired immune system in successful cancer chemotherapy with cis-diamminedichloroplatinum (II) in a syngeneic mouse tumor transplantation model. J. Immunother. 34, 480–489 (2011)CrossRefPubMedGoogle Scholar
  137. 137.
    Dunn, G.P., Old, L.J., Schreiber, R.D.: The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Allavena, P., Mantovani, A.: Immunology in the clinic review series; focus on cancer: tumour-associated macrophages: undisputed stars of the inflammatory tumour microenvironment. Clin. Exp. Immunol. 167, 195–205 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Beatty, G.L., Chiorean, E.G., Fishman, M.P., Saboury, B., Teitelbaum, U.R., Sun, W., Huhn, R.D., Song, W., Li, D., Sharp, L.L., Torigian, D.A., O’Dwyer, P.J., Vonderheide, R.H.: CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331, 1612–1616 (2011)PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Sodhi, A., Chauhan, P.: Interaction between cisplatin treated murine peritoneal macrophages and L929 cells: involvement of adhesion molecules, cytoskeletons, upregulation of Ca2+ and nitric oxide dependent cytotoxicity. Mol. Immunol. 44, 2265–2276 (2007)CrossRefPubMedGoogle Scholar
  141. 141.
    Li, Y., Wang, Z., Ma, X., Shao, B., Gao, X., Zhang, B., Xu, G., Wei, Y.: Low-dose cisplatin administration to septic mice improves bacterial clearance and programs peritoneal macrophage polarization to M1 phenotype. Pathog. Dis. 72, 111–123 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Kroemer, G., Galluzzi, L., Kepp, O., Zitvogel, L.: Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 31, 51–72 (2013)CrossRefPubMedGoogle Scholar
  143. 143.
    Obeid, M., Tesniere, A., Ghiringhelli, F., Fimia, G.M., Apetoh, L., Perfettini, J.L., Castedo, M., Mignot, G., Panaretakis, T., Casares, N., Metivier, D., Larochette, N., van Endert, P., Ciccosanti, F., Piacentini, M., Zitvogel, L., Kroemer, G.: Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 13, 54–61 (2007)CrossRefPubMedGoogle Scholar
  144. 144.
    Menger, L., Vacchelli, E., Adjemian, S., Martins, I., Ma, Y., Shen, S., Yamazaki, T., Sukkurwala, A.Q., Michaud, M., Mignot, G., Schlemmer, F., Sulpice, E., Locher, C., Gidrol, X., Ghiringhelli, F., Modjtahedi, N., Galluzzi, L., André, F., Zitvogel, L., Kepp, O., Kroemer, G.: Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci. Transl. Med. 4, 143ra99 (2012)CrossRefPubMedGoogle Scholar
  145. 145.
    Sukkurwala, A.Q., Adjemian, S., Senovilla, L., Michaud, M., Spaggiari, S., Vacchelli, E., Baracco, E.E., Galluzzi, L., Zitvogel, L., Kepp, O., Kroemer, G.: Screening of novel immunogenic cell death inducers within the NCI mechanistic diversity set. OncoImmunology 3, e28473 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Kepp, O., Menger, L., Vacchelli, E., Locher, C., Adjemian, S., Yamazaki, T., Martins, I., Sukkurwala, A.Q., Michaud, M., Senovilla, L., Galluzzi, L., Kroemer, G., Zitvogel, L.: Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 24, 311–318 (2013)CrossRefPubMedGoogle Scholar
  147. 147.
    Chao, M.P., Jaiswal, S., Weissman-Tsukamoto, R., Alizadeh, A.A., Gentles, A.J., Volkmer, J., Weiskopf, K., Willingham, S.B., Raveh, T., Park, C.Y., Majeti, R., Weissman, I.L.: Calreticulin is the dominant pro-phagocytic signal on multiple human cancers and is counterbalanced by CD47. Sci. Transl. Med. 2, 63ra94 (2010)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryNational University of SingaporeSingaporeSingapore

Personalised recommendations