Advertisement

Wavelength-Convertible Optical Switch Based on Cross-Gain Modulation Effect of SOA

  • Sukhbir Singh
  • Surinder Singh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 705)

Abstract

All-optical switching based on wavelength conversion using cross-gain modulation (XGM) effect of semiconductor optical amplifier (SOA) has been proposed and demonstrated for 10 Gbps NRZ modulated data signals. Error-free operation is successfully achieved for converted signal with Q-factor of >28.96 at optimum input probe power of −8 dBm. The proposed simple and cost-effective structure of optical switch can be utilized for future ultra-fast optical switching circuit and to expand the optical network.

Keywords

Cross-gain modulation (XGM) Semiconductor optical amplifier Wavelength conversion Optical switching 

References

  1. 1.
    Castoldi, P., Raponi, P.G., Andriolli, N., Cerutti, I., Liboiron-Ladouceur, O.: Energy-efficient switching in optical interconnection networks. In: Proceedings of the ICTON 13th International Conference on Transparent Optical Networks (ICTON) (2011)Google Scholar
  2. 2.
    Durhuus, T., Mikkelsen, B., Joergensen, C., Danielsen, S.L., Stubkjaer, K.E.: All-optical wavelength conversion by semiconductor optical amplifiers. J. Lightwave Technol. 14(6), 942–954 (1996)CrossRefGoogle Scholar
  3. 3.
    Schaafsma, D.T., Bradley, E.M.: Cross-gain modulation and frequency conversion crosstalk effects in 1550-nm gain-clamped semiconductor optical amplifiers. IEEE Photon. Technol. Lett. 11, 727–729 (1999)CrossRefGoogle Scholar
  4. 4.
    Singh, S., Singh, S.: Performance analysis of hybrid WDM-OTDM optical multicast overlay system employing 120 Gbps polarization and subcarrier multiplexed unicast signal with 40 Gbps multicast signal. Opt. Commun. 385, 36–42 (2016)CrossRefGoogle Scholar
  5. 5.
    Singh, S., Singh, S.: Investigation on four wave mixing effect in various optical fibers for different spectral efficient orthogonal modulation formats. Opt. Laser Technol. 76, 64–68 (2016)CrossRefGoogle Scholar
  6. 6.
    Fu, S., Wang, M., Zhong, W.-D., Shum, P., Wen, Y., Wu, J.J., Lin, J.: SOA nonlinear polarization rotation with linear polarization maintenance: characterization and applications. IEEE J. Sel. Top. Quantum Electron. 14(3), 816–825 (2008)CrossRefGoogle Scholar
  7. 7.
    Singh, S., Ye, X., Kaler, R.S.: All optical wavelength conversion based on cross polarization modulation in semiconductor optical amplifier. J. Lightwave Technol. 31(11), 1783–1792 (2013)CrossRefGoogle Scholar
  8. 8.
    Contestabile, G., Presi, M., Ciaramella, E.: Multiple wavelength conversion for WDM multicasting by FWM in an SOA. IEEE Photonic Technol. Lett. 16, 1775–1777 (2004)CrossRefGoogle Scholar
  9. 9.
    Liu, H., Li, Y., Peng, H., Huang, J., Kong, D.: Multicast contention resolution based on time-frequency joint scheduling in elastic optical switching networks. Opt. Commun. 383, 441–445 (2017)CrossRefGoogle Scholar
  10. 10.
    Zhang, D., Guo, H., Yang, T., Wu, J.: Optical switching based small-world data center network. Comput. Commun. (Article in Press) 1–12 (2017)Google Scholar
  11. 11.
    Zhang, D., Guo, H., Chen, G., Zhu, Y., Yu, H., Wang, J., Wu, J.: Analysis and experimental demonstration of an optical switching enabled scalable data center network architecture. Opt. Switch. Netw. 23, 205–214 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringSant Longowal Institute of Engineering and TechnologyLongowalIndia

Personalised recommendations