Advertisement

Segmentation Techniques for Computer-Aided Diagnosis of Glaucoma: A Review

  • Sumaiya Pathan
  • Preetham Kumar
  • Radhika M. Pai
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 705)

Abstract

Glaucoma is an eye disease in which the optic nerve head (ONH) is damaged, leading to irreversible loss of vision. Vision loss due to glaucoma can be prevented only if it is detected at an early stage. Early diagnosis of glaucoma is possible by measuring the level of intra-ocular pressure (IOP) and the amount of neuro-retinal rim (NRR) area loss. The diagnosis accuracy depends on the experience and domain knowledge of the ophthalmologist. Hence, automated extraction of features from the retinal fundus images can play a major role for screening of glaucoma. The main aim of this paper is to review the different segmentation algorithms used to develop a computer-aided diagnostic (CAD) system for the detection of glaucoma from fundus images, and additionally, the future work is also highlighted.

Keywords

Cup-to-disk ratio Glaucoma Neuro-retinal rim area Optic disk Optic cup Segmentation 

References

  1. 1.
    Quigley, H.A., Broman, A.T.: The number of people with glaucoma worldwide in 2010 and 2020. Brit. J. Opthalmol 90(5), 262–267 (2006)CrossRefGoogle Scholar
  2. 2.
    Lim, R., Golberg, I.: The glaucoma book, 2nd edn. Springer Science Business Media, New York (2010)Google Scholar
  3. 3.
    Acharya, R., Yun, W.L., Ng, E.Y.K., Yu, W., Suri, J.S.: Imaging systems of human eye: a review. J. Med. Syst 32(2), 301–315 (2008)CrossRefGoogle Scholar
  4. 4.
    Nishikawa, R.M., Giger, M.L., Vyborny, C.J., Schmidt, R.A.: Computer-aided detection of clustered micro classifiations on digital mammograms. J Comput. Methods Progr. Biomed. 116(3), 226–235 (2014)CrossRefGoogle Scholar
  5. 5.
    Cheng, J., Liu, J., Xu, Y., et al.: Optic disk segmentation based on variational model with multiple energies. IEEE Trans. Med. Imaging 32(6), 1019–1032 (2013)CrossRefGoogle Scholar
  6. 6.
    Das, Nirmala, S.R., Medhi, et al.: Diagnosis of glaucoma using CDR and NRR area in retina images. Netw. Model Anal Health Inf. Bioinform. 5(1), 91–96 (2015)Google Scholar
  7. 7.
    Jonas, J., Budde, W., Jonas, S.: Opthalmoscopic evaluation of optic nerve head. Surv. Ophthalmol. 43(5), 293–320 (1999)CrossRefGoogle Scholar
  8. 8.
    Jonas, J.: Clinical implication of peripapillary attropy in glaucoma. Curr. Opin. Ophthalmol. 16(3), 84–88 (2005)CrossRefGoogle Scholar
  9. 9.
    Ehrlich, J.R., Radcliffe, N.M.: The role of clinical parapaillary atrophy evaluation in the diagnosis of open angle glaucoma. Clin. Ophthalmol. 4(3), 971–976 (2010)CrossRefGoogle Scholar
  10. 10.
    Structured Analysis of retina (Stare). http://cecas.clemson.edu/~ahoover/stare/. Accessed 18 July 2017
  11. 11.
    Stall, J., Abramoff, M., Niemeijer, M., Viergever, M., et al.: Ridge based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)CrossRefGoogle Scholar
  12. 12.
    Diaretdb0: Evaluation database and methodology for diabetic retinopathy algorithms. http://www.it.lut.fi/project/imageret/diaretdb0/. Accessed 18 July 2017
  13. 13.
    Diaretdb1: Diabetic retinopathy evaluation protocol. http://www.it.lut.fi/project/imageret/diaretdb1/. Accessed 18 July 2017
  14. 14.
  15. 15.
  16. 16.
    Dai, B., Wu, X., Bu, W.: Superpixel classification based optic disk and optic cup segmentation for glaucoma screening. J. Pattern Recognit. 64(7), 226–235 (2017)CrossRefGoogle Scholar
  17. 17.
    Lu, S., et al.: Accurate and efficient optic disc detection and segmentation by a circular transformation. IEEE Trans. Med. Imaging 30(12), 2126–2133 (2011)CrossRefGoogle Scholar
  18. 18.
    Hsiao, H.-K., Liu, C.-C., Yu, C.-Y., Kuo, S.-W., Yu, S.-S.: A novel optic disc detection scheme on retinal images. J Expert Syst. Appl. 39(12), 10600–11066 (2012)CrossRefGoogle Scholar
  19. 19.
    Roychowdhury, S., Koozekanani, D.D., Kuchinka, S.N., Parhi, K.K.: Optic disc boundary and vessel origin segmentation of fundus images. IEEE J. Biomed. Health Inform. 20(6), 1562–1574 (2016)CrossRefGoogle Scholar
  20. 20.
    Bharkad, S.: Automatic segmentation of optic disk in retinal images. J. Biomed. Signal Process Control 31(5), 483–491 (2017)CrossRefGoogle Scholar
  21. 21.
    Mary, M.C.V.S., Rajsingh, E.B., Jacob, J.K.K., Anandhi, D., Amato, U., Selvan, S.E.: An empirical study on optic disc segmentation using an active contour model. J. Biomed. Signal Process Control 18(5), 19–29 (2015)CrossRefGoogle Scholar
  22. 22.
    Díaz-Pernil, D., Fondón, I., Peña-Cantillana, F., Gutiérrez-Naranjo, M.A.: Fully automatized parallel segmentation of the optic disc in retinal fundus images. J. Pattern Recognit. Lett. 83(3), 99–107 (2016)CrossRefGoogle Scholar
  23. 23.
    Dai, B., Wu, X., Bu, W.: Optic disc segmentation based on variational model with multiple energies. J. Pattern Recognit. 64(6), 226–235 (2017)CrossRefGoogle Scholar
  24. 24.
    Xiong, L., Li, H.: An approach to locate optic disc in retinal images with pathological changes. J. Comput. Med. Imaging Graph. 47, 40–50 (2016)CrossRefGoogle Scholar
  25. 25.
    Joshi, G.D., Sivaswamy, J., Krishnadas, S.R.: Optic disk and cup segmentation from monocular color retinal images for glaucoma assessment. IEEE Trans. Med. Imaging 30(6), 1192–1205 (2011)CrossRefGoogle Scholar
  26. 26.
    Damon, W.W.K., Liu, J., Meng, T.N., Fengshou, Y., Yin, W.T.: Automatic detection of the optic cup using vessel kinking in digital retinal fundus images. In: 9th IEEE International Symposium on Biomedical Imaging (ISBI) (2012)Google Scholar
  27. 27.
    Fondon, I., Valverde, J.F., Sarmiento, A., Abbas, Q., Jimenez, S., Alemany, P.: Automatic optic cup segmentation algorithm for retinal fundus images based on random forest classifier. In: International Conference on Computer as a Tool IEEE EUROCON 2015 (2015)Google Scholar
  28. 28.
    Hu, M., Zhu, C., Li, X., Xu, Y.: Optic cup segmentation from fundus images for glaucoma diagnosis. J. Bioeng. 8(1), 21–28 (2016)Google Scholar
  29. 29.
    Narasimhan, K., Vijayarekha, K., Jogi Narayan, K.A., Siva Prasad, P., Satish Kumar, V.: An efficient automated system for glaucoma detection using fundus images. Res. J. Appl. Sci. Eng. Technol. (2012)Google Scholar
  30. 30.
    Khan, F., Khan, S.A., Yasin, U.U., Haq, I.U., Qamar, U.: Detection of glaucoma using retinal fundus images. In: The 6th 2013 Biomedical Engineering International Conference (2013)Google Scholar
  31. 31.
    Lotankar, M., Noronha, K., Koti, J.: Glaucoma screening using digital fundus images through optic disk and optic cup segmentation. Int. J. Comput. Appl. 9975–8887 (2015)Google Scholar
  32. 32.
    Issac, A., Sarathi, M.P., Dutta, M.K.: An adaptive threshold based image processing technique for improved glaucoma detection and classification. J Comput. Methods Programs Biomed. 122(2), 229–244 (2015)CrossRefGoogle Scholar
  33. 33.
    Mittapalli, P.S., Kande, G.B.: Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. J. Biomed. Signal Process. Control 24, 34–46 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sumaiya Pathan
    • 1
  • Preetham Kumar
    • 1
  • Radhika M. Pai
    • 1
  1. 1.Department of Information and Communication TechnologyManipal Institute of Technology, Manipal Academy of Higher EducationManipalIndia

Personalised recommendations