Revolution in the Form of Polymeric Adsorbents 1: Porous Hollow-Fiber Membranes and Porous Sheets

Chapter

Abstract

Porous hollow-fiber membranes and porous sheets used for microfiltration can be modified into porous adsorbents by radiation-induced graft polymerization. The three-dimensional modification or modification over the entire volume of the porous trunk polymer provides a functional density comparable to that of conventional adsorbents. The ideal adsorption in a flow-through mode is achievable because the time required for a target to diffuse to the functional moiety is much shorter than the residence time of the target solution as it passes through the porous membrane or sheet. The multilayer binding of proteins via multipoints in the polymer brush is applied to the immobilization of an enzyme at a high density, leading to high activity in enzyme reactions such as the quantitative hydrolysis of 4 M urea solution.

Keywords

Porous hollow-fiber membrane Porous sheet Three-dimensional modification Ideal adsorption Enzyme immobilization 

References

  1. 1.
    N.B. Afeyan, N.F. Gordon, I. Mazsaroff, L. Varady, S.P. Fulton, Y.B. Yang, F.E. Regnier, Flow-through particles for the high-performance liquid chromatographic separation of biomolecules: perfusion chromatography. J. Chromatogr. 519, 1–29 (1990)CrossRefGoogle Scholar
  2. 2.
    S. Brandt, R.A. Goffe, S.B. Kessler, J.L. O’Connor, S.E. Zale, Membrane-based affinity technology for commercial scale purifications. Nat. Biotechnol. 6, 779–782 (1988)CrossRefGoogle Scholar
  3. 3.
    S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, J. Okamoto, Metal collection using chelating hollow-fiber membrane. J. Membr. Sci. 58, 221–234 (1991)CrossRefGoogle Scholar
  4. 4.
    H. Yamagishi, K. Saito, S. Furusaki, T. Sugo, I. Ishigaki, Introduction of a high-density chelating group into a porous membrane without lowering the flux. Ind. Eng. Chem. Res. 30, 2234–2237 (1991)CrossRefGoogle Scholar
  5. 5.
    S. Konishi, K. Saito, S. Furusaki, T. Sugo, Sorption kinetics of cobalt in chelating porous membrane. Ind. Eng. Chem. Res. 31, 2722–2727 (1992)CrossRefGoogle Scholar
  6. 6.
    G. Li, S. Konishi, K. Saito, T. Sugo, High collection rate of Pd in hydrochloric acid medium using chelating microporous membrane. J. Membr. Sci. 95, 63–69 (1994)CrossRefGoogle Scholar
  7. 7.
    G. Li, S. Konishi, K. Saito, S. Furusaki, T. Sugo, K. Makuuchi, Collection of palladium using an ethylenediamine-immobilized chelating microporous membrane. Membrane (Maku) 20, 224–228 (1995)CrossRefGoogle Scholar
  8. 8.
    T. Yoshikawa, D. Umeno, K. Saito, T. Sugo, High-performance collection of palladium ions in acidic media using nucleic-acid-base-immobilized porous hollow-fiber membranes. J. Membr. Sci. 307, 82–87 (2008)CrossRefGoogle Scholar
  9. 9.
    S. Tsuneda, A. Hirata, M. Tamada, T. Sugo, High-speed recovery of antimony using chelating porous hollow-fiber membrane. J. Membr. Sci. 214, 275–281 (2003)CrossRefGoogle Scholar
  10. 10.
    T. Saito, H. Kawakita, K. Uezu, S. Tsuneda, A. Hirata, K. Saito, M. Tamada, T. Sugo, Structure of polyol-ligand-containing polymer brush on the porous membrane for antimony (III) binding. J. Membr. Sci. 236, 65–71 (2004)CrossRefGoogle Scholar
  11. 11.
    I. Ozawa, K. Saito, K. Sugita, K. Sato, M. Akiba, T. Sugo, High-speed recovery of germanium in a convection-aided mode using functional porous hollow-fiber membranes. J. Chromatogr. A 888, 43–49 (2000)CrossRefGoogle Scholar
  12. 12.
    H. Kim, M. Kim, I. Ozawa, K. Saito, K. Sugita, M. Tamada, T. Sugo, K. Sato, M. Akiba, K. Ichimura, Preparation of chelating porous membranes for the recovery of germanium and their adsorption characteristics. J. Ion Exchange 13, 10–14 (2002)CrossRefGoogle Scholar
  13. 13.
    T. Mochizuki, K. Saito, K. Sato, M. Akiba, T. Sugo, Recovery of p.t-CEtGeO using chelating porous membranes prepared with various compositions of dioxane/water solvent. J. Ion Exchange 18, 68–74 (2007)CrossRefGoogle Scholar
  14. 14.
    K. Ikeda, D. Umeno, K. Saito, F. Koide, E. Miyata, T. Sugo, Removal of boron using nylon-based chelating fibers. Ind. Eng. Chem. Res. 50, 5727–5732 (2011)CrossRefGoogle Scholar
  15. 15.
    K. Sekiguchi, K. Serizawa, S. Konishi, K. Saito, S. Furusaki, T. Sugo, Uranium uptake during permeation of seawater through amidoxime-group-immobilized micropores. React. Polym. 23, 141–145 (1994)CrossRefGoogle Scholar
  16. 16.
    E.M. Thurman, M.S. Mills. Solid-Phase Extraction (John Wiley & Sons, Inc., 1998)Google Scholar
  17. 17.
    S. Domon, S. Asai, K. Saito, K. Watanabe, T. Sugo, Selection of the alkylamino group introduced into the polymer chain grafted onto a porous membrane for the impregnation of an acidic extractant. J. Membr. Sci. 262, 153–158 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Asai, K. Watanabe, T. Sugo, K. Saito, Interaction between an acidic extractant and an octadecylamino group introduced into a grafted polymer chain. Sep. Sci. Technol. 40, 3349–3364 (2005)CrossRefGoogle Scholar
  19. 19.
    S. Asai, K. Watanabe, T. Sugo, K. Saito, Preparation of an extractant-impregnated porous membrane for the high-speed separation of a metal ion. J. Chromatogr. A 1094, 158–164 (2005)CrossRefGoogle Scholar
  20. 20.
    K. Sawaki, S. Domon, S. Asai, K. Watanabe, T. Sugo, K. Saito, Impregnation of an acidic extractant cyanex 272 to the alkylamino group and alkylthiol group introduced into the polymer chain grafted onto a porous membrane. Membrane (Maku) 32, 109–115 (2007)CrossRefGoogle Scholar
  21. 21.
    S. Asai, K. Watanabe, K. Saito, T. Sugo, Preparation of Aliquat 336-impregnated porous membrane. J. Membr. Sci. 281, 195–202 (2006)CrossRefGoogle Scholar
  22. 22.
    S. Asai, K. Watanabe, T. Sugo, K. Saito, Effects of Aliquant 336 concentration and solvent composition on amount of Aliquat 336 impregnated and liquid permeability of Aliquat 336-impregnated porous hollow-fiber membrane. Membrane (Maku) 32, 168–174 (2007)CrossRefGoogle Scholar
  23. 23.
    K. Sawaki, S. Asai, K. Watanabe, T. Sugo, K. Saito, Impregnation of a neutral extractant to hydrophobic group introduced into the polymer chain grafted onto a porous membrane. Membrane (Maku) 33, 32–38 (2008)CrossRefGoogle Scholar
  24. 24.
    M. Kim, K. Saito, S. Furusaki, T. Sugo, J. Okamoto, Water flux and protein adsorption of a hollow fiber modified with hydroxyl groups. J. Membr. Sci. 56, 289–302 (1991)CrossRefGoogle Scholar
  25. 25.
    M. Kim, K. Saito, S. Furusaki, T. Sugo, Comparison of BSA adsorption and Fe sorption to the diol group and tannin immobilized onto a microfiltration membrane. J. Membr. Sci. 85, 21–28 (1993)CrossRefGoogle Scholar
  26. 26.
    M. Kim, J. Kojima, K. Saito, S. Furusaki, T. Sugo, Reduction of nonselective adsorption of proteins by hydrophilization of microfiltration membranes by radiation-induced grafting. Biotechnol. Prog. 10, 114–120 (1994)CrossRefGoogle Scholar
  27. 27.
    S. Matsuno, A. Iwanade, D. Umeno, K. Saito, H. Ito, M. Sakamoto, Carboxybetaine-group immobilized onto pore surface reduced protein adsorption to porous membrane. Membrane (Maku) 35, 86–92 (2010)CrossRefGoogle Scholar
  28. 28.
    K. Ishihara, T. Ueda, N. Nakabayashi, Preparation of phospholipid polymers and their properties as polymer hydrogel membranes. Polym. J. 22, 355–360 (1990)CrossRefGoogle Scholar
  29. 29.
    S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, High-throughput processing of protein using a porous and tentacle anion-exchange membrane. J. Chromatogr. A 689, 211–218 (1995)CrossRefGoogle Scholar
  30. 30.
    S. Tsuneda, H. Kagawa, K. Saito, T. Sugo, Hydrodynamic evaluation of three-dimensional adsorption of protein to a polymer brush grafted onto a porous substrate. J. Colloid Interface Sci. 176, 95–100 (1995)CrossRefGoogle Scholar
  31. 31.
    S. Tsuneda, K. Saito, T. Sugo, K. Makuuchi, Protein adsorption characteristics of porous and tentacle anion-exchange membrane prepared by radiation-induced graft polymerization. Radiat. Phys. Chem. 46, 239–245 (1995)CrossRefGoogle Scholar
  32. 32.
    S. Matoba, S. Tsuneda, K. Saito, T. Sugo, Highly efficient enzyme recovery using a porous membrane with immobilized tentacle polymer chains. Nat. Biotechnol. 13, 795–797 (1995)CrossRefGoogle Scholar
  33. 33.
    N. Kubota, S. Miura, K. Saito, K. Sugita, K. Watanabe, T. Sugo, Comparison of protein adsorption by anion-exchange interaction onto porous hollow-fiber membrane and gel bead-packed bed. J. Membr. Sci. 117, 135–142 (1996)CrossRefGoogle Scholar
  34. 34.
    N. Kubota, Y. Konno, S. Miura, K. Saito, K. Sugita, K. Watanabe, T. Sugo, Comparison of two convection-aided protein adsorption methods using porous membranes and perfusion beads. Biotechnol. Prog. 12, 869–872 (1996)CrossRefGoogle Scholar
  35. 35.
    N. Kubota, Y. Konno, K. Saito, K. Sugita, K. Watanabe, T. Sugo, Module performance of anion-exchange porous hollow-fiber membranes for high-speed protein recovery. J. Chromatogr. A 782, 159–165 (1997)CrossRefGoogle Scholar
  36. 36.
    N. Kubota, Y. Konno, K. Saito, K. Sugita, K. Watanabe, T. Sugo, Protein adsorption and elution performances of modules consisting of porous anion-exchange hollow-fiber membranes. Membrane (Maku) 22, 105–110 (1997)CrossRefGoogle Scholar
  37. 37.
    N. Sasagawa, K. Saito, K. Sugita, T. Ogasawara, T. Sugo, Adsorption characteristics of binary proteins onto anion-exchange porous hollow-fiber membrane. J. Ion Exchange 9, 74–80 (1998)CrossRefGoogle Scholar
  38. 38.
    I. Koguma, K. Sugita, K. Saito, T. Sugo, Multilayer binding of proteins to polymer chains grafted onto porous hollow-fiber membranes containing different anion-exchange groups. Biotechnol. Prog. 16, 456–461 (2000)CrossRefGoogle Scholar
  39. 39.
    K. Hagiwara, S. Yonedu, K. Saito, T. Shiraishi, T. Sugo, T. Tojyo, E. Katayama, High-performance purification of gelsolin from plasma using anion-exchange porous hollow-fiber membrane. J. Chromatogr. B 821, 153–158 (2005)CrossRefGoogle Scholar
  40. 40.
    S. Yonedu, K. Saito, E. Katayama, T. Tojyo, T. Shiraishi, T. Sugo, Affinity elution of gelsolin adsorbed onto an anion-exchange porous membrane. Membrane (Maku) 30, 269–274 (2005)CrossRefGoogle Scholar
  41. 41.
    T. Yoshikawa, K. Hagiwara, K. Saito, E. Katayama, T. Tojyo, T. Sugo, Comparison of gelsolin purification performance between anion-exchange-graft-chain-containing porous membrane and anion-exchange bead-packed bed. J. Ion Exchange 18, 2–8 (2007)CrossRefGoogle Scholar
  42. 42.
    A. Nide, S. Kawai-Noma, D. Umeno, K. Saito, Reduction of buffer volume used in regeneration of anion-exchange porous hollow-fiber membrane by site-controlled introduction of anion-exchange group into graft chain. Membrane (Maku) 39, 258–263 (2014)CrossRefGoogle Scholar
  43. 43.
    K. Kobayashi, S. Tsuneda, K. Saito, H. Yamagishi, S. Furusaki, T. Sugo, Preparation of microfiltration membranes containing anion-exchange groups. J. Membr. Sci. 76, 209–218 (1993)CrossRefGoogle Scholar
  44. 44.
    H. Shinano, S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, Ion exchange of lysozyme during permeation across a microporous sulfopropyl-group-containing hollow fiber. Biotechnol. Prog. 9, 193–198 (1993)CrossRefGoogle Scholar
  45. 45.
    S. Tsuneda, H. Shinano, K. Saito, S. Furusaki, T. Sugo, Binding of lysozyme onto a cation-exchange microporous membrane containing tentacle-type grafted polymer branches. Biotechnol. Prog. 10, 76–81 (1994)CrossRefGoogle Scholar
  46. 46.
    N. Sasagawa, K. Saito, K. Sugita, S. Kunori, T. Sugo, Ionic crosslinking of SO3H-group-containing graft chains helps to capture lysozyme in a permeation mode. J. Chromatogr. A 848, 161–168 (1999)CrossRefGoogle Scholar
  47. 47.
    D. Okamura, K. Saito, K. Sugita, M. Tamada, T. Sugo, Solvent effect on protein binding by polymer brush grafted onto porous membrane. J. Chromatogr. A 953, 101–109 (2002)CrossRefGoogle Scholar
  48. 48.
    D. Okamura, K. Saito, K. Sugita, M. Tamada, T. Sugo, Effect of alcohol solvent for glycidyl methacrylate in radiation-induced graft polymerization on performance of cation-exchange porous membranes. Membrane (Maku) 27, 196–201 (2002)CrossRefGoogle Scholar
  49. 49.
    A. Iwanade, D. Umeno, K. Saito, T. Sugo, Protein binding to amphoteric polymer brushes grafted onto a porous hollow-fiber membrane. Biotechnol. Prog. 23, 1425–1430 (2007)CrossRefGoogle Scholar
  50. 50.
    A. Iwanade, T. Nomoto, D. Umeno, K. Saito, T. Sugo, Protein binding characteristics of amphoteric polymer brushes grafted onto porous hollow-fiber membrane. J. Ion Exchange 18, 492–497 (2007)CrossRefGoogle Scholar
  51. 51.
    A. Iwanade, D. Umeno, K. Saito, T. Sugo, Dependence of protein binding capacity of dimethylamino-γ-butyric-acid (DMGABA)-immobilized porous membrane on composition of solvent used for DMGABA immobilization. Radiat. Phys. Chem. 87, 53–58 (2013)CrossRefGoogle Scholar
  52. 52.
    T. Kawai, K. Sugita, K. Saito, T. Sugo, Extension and shrinkage of polymer brush grafted onto porous membrane induced by protein binding. Macromolecules 33, 1306–1309 (2000)CrossRefGoogle Scholar
  53. 53.
    K. Miyoshi, K. Saito, T. Shiraishi, T. Sugo, Introduction of taurine into polymer brush grafted onto porous hollow-fiber membrane. J. Membr. Sci. 264, 97–103 (2005)CrossRefGoogle Scholar
  54. 54.
    N. Kubota, M. Kounosu, K. Saito, K. Sugita, K. Watanabe, T. Sugo, Preparation of a hydrophobic porous membrane containing phenyl groups and its protein adsorption performance. J. Chromatogr. A 718, 27–34 (1995)CrossRefGoogle Scholar
  55. 55.
    N. Kubota, M. Kounosu, K. Saito, K. Sugita, K. Watanabe, T. Sugo, Control of phenyl-group site introduced on the graft chain for hydrophobic interaction chromatography. React. Polym. 29, 115–122 (1996)CrossRefGoogle Scholar
  56. 56.
    N. Kubota, M. Kounosu, K. Saito, K. Sugita, K. Watanabe, T. Sugo, Protein adsorption and elution performances of porous hollow-fiber membranes containing various hydrophobic ligands. Biotechnol. Prog. 13, 89–95 (1997)CrossRefGoogle Scholar
  57. 57.
    N. Kubota, M. Kounosu, K. Saito, K. Sugita, K. Watanabe, T. Sugo, Repeated use of a hydrophobic ligand-containing porous membrane for protein recovery. J. Membr. Sci. 134, 67–73 (1997)CrossRefGoogle Scholar
  58. 58.
    S. Nishiyama, A. Goto, K. Saito, K. Sugita, M. Tamada, T. Sugo, T. Funami, Y. Goda, S. Fujimoto, Concentration of 17β-estradiol using an immunoaffinity porous hollow-fiber membrane. Anal. Chem. 74, 4933–4936 (2002)CrossRefGoogle Scholar
  59. 59.
    M. Kim, S. Kiyahara, S. Konishi, S. Tsuneda, K. Saito, T. Sugo, Ring-opening reaction of poly-GMA chain grafted onto a porous membrane. J. Membr. Sci. 117, 33–38 (1996)CrossRefGoogle Scholar
  60. 60.
    S. Kiyohara, M. Kim, Y. Toida, K. Saito, K. Sugita, T. Sugo, Selection of a precusor monomer for the introduction of affinity ligands onto a porous membrane by radiation-induced graft polymerization. J. Chromatogr. A 758, 209–215 (1997)CrossRefGoogle Scholar
  61. 61.
    H. Iwata, K. Saito, S. Furusaki, T. Sugo, J. Okamoto, Adsorption characteristics of an immobilized metal affinity membrane. Biotechnol. Prog. 7, 412–418 (1991)CrossRefGoogle Scholar
  62. 62.
    K. Kin, K. Hagiwara, D. Umeno, K. Saito, T. Sugo, Purification of His-tagged protein using an immobilized nickel affinity porous hollow-fiber membrane. Membrane (Maku) 34, 233–238 (2009)CrossRefGoogle Scholar
  63. 63.
    Y. Monma, D. Umeno, K. Saito, T. Sugo, Binding of phosphotyrosine to gallium-ion-immobilized porous hollow-fiber membrane. Membrane (Maku) 35, 242–247 (2010)CrossRefGoogle Scholar
  64. 64.
    M. Kim, K. Saito, S. Furusaki, T. Sugo, I. Ishigaki, Adsorption and elution of bovine gamma-globulin using an affinity membrane containing hydrophobic amino acids as ligands. J. Chromatogr. 585, 45–51 (1991)CrossRefGoogle Scholar
  65. 65.
    M. Kim, K. Saito, S. Furusaki, T. Sugo, I. Ishigaki, Protein adsorption capacity of a porous phenylalanine-containing membrane based on a polyethylene matrix. J. Chromatogr. 586, 27–33 (1991)CrossRefGoogle Scholar
  66. 66.
    S. Matsuno, D. Umeno, M. Miyazaki, Y. Suzuta, K. Saito, T. Yamashita, Immobilization of an esterase inhibitor on a porous hollow-fiber membrane by radiation-induced graft polymerization for developing a diagnostic tool for feline kidney diseases. Biosci. Biotechnol. Biochem. 77, 2061–2064 (2013)CrossRefGoogle Scholar
  67. 67.
    S. Kiyohara, M. Sasaki, K. Saito, K. Sugita, T. Sugo, Radiation-induced grafting of phenylalanine-containing monomer onto a porous membrane. React. Polym. 31, 103–110 (1996)CrossRefGoogle Scholar
  68. 68.
    S. Kiyohara, M. Sasaki, K. Saito, K. Sugita, T. Sugo, Amino acid addition to epoxy-group-containing polymer chain grafted onto a porous membrane. J. Membr. Sci. 109, 87–92 (1996)CrossRefGoogle Scholar
  69. 69.
    A. Shibasaki, Y. Irimoto, M. Kim, K. Saito, K. Sugita, T. Baba, I. Honjyo, S. Moriyama, T. Sugo, Selective binding of docosahexaenoic acid ethyl ester to a silver-ion-loaded porous hollow-fiber membrane. JAOCS 76, 771–775 (1999)CrossRefGoogle Scholar
  70. 70.
    I. Ozawa, M. Kim, K. Saito, K. Sugita, T. Baba, S. Moriyama, T. Sugo, Purification of docosahexaenoic acid ethyl ester using silver-ion immobilized porous hollow-fiber membrane module. Biotechnol. Prog. 17, 893–896 (2001)CrossRefGoogle Scholar
  71. 71.
    S. Konishi, K. Saito, S. Furusaki, T. Sugo, Binary metal-ion sorption during permeation through chelating porous membrane. J. Membr. Sci. 111, 1–6 (1996)CrossRefGoogle Scholar
  72. 72.
    J.S. Chaberek, A.E. Martell, Stability of metal chelates. I. Iminodiacetic and iminodipropinic acids. J. Am. Chem. Soc. 74, 5052–5056 (1952)CrossRefGoogle Scholar
  73. 73.
    H. Kawakita, K. Sugita, K. Saito, M. Tamada, T. Sugo, H. Kawamoto, Optimization of reaction conditions in production of cycloisomaltooligosaccharides using enzyme immobilized in multilayers onto pore surface of porous hollow-fiber membranes. J. Membr. Sci. 205, 175–182 (2002)CrossRefGoogle Scholar
  74. 74.
    T. Kawai, H. Kawakita, K. Sugita, K. Saito, M. Tamada, T. Sugo, H. Kawamoto, Conversion of dextran to cycloisomaltooligosaccharides using enzyme-immobilized porous hollow-fiber membrane. J. Agric. Food Sci. 50, 1073–1076 (2002)CrossRefGoogle Scholar
  75. 75.
    H. Kawakita, K. Sugita, K. Saito, M. Tamada, T. Sugo, H. Kawamoto, Production of cycloisomaltooligosaccharides from dextran using enzyme immobilized in multilayers onto porous membranes. Biotechnol. Prog. 18, 465–469 (2002)CrossRefGoogle Scholar
  76. 76.
    H. Kawakita, K. Saito, K. Sugita, M. Tamada, T. Sugo, H. Kawamoto, Skin-layer formation of porous membrane by immobilized dextransucrase. AIChE J. 50, 696–700 (2004)CrossRefGoogle Scholar
  77. 77.
    S. Kobayashi, S. Yonedu, H. Kawakita, K. Saito, K. Sugita, M. Tamada, T. Sugo, W. Lee, Highly multilayered urease decomposes highly concentrated urea. Biotechnol. Prog. 19, 396–399 (2003)CrossRefGoogle Scholar
  78. 78.
    M. Nakamura, K. Saito, K. Sugita, T. Sugo, Application of crosslinked-aminoacylase-multilayered membranes to bioreactor. Membrane (Maku) 23, 316–321 (1998)CrossRefGoogle Scholar
  79. 79.
    T. Kawai, M. Nakamura, K. Sugita, K. Saito, T. Sugo, High conversion in asymmetric hydrolysis during permeation through enzyme-multilayered porous hollow-fiber membranes. Biotechnol. Prog. 17, 872–875 (2001)CrossRefGoogle Scholar
  80. 80.
    T. Kawai, K. Saito, K. Sugita, T. Sugo, H. Misaki, Immobilization of ascorbic acid oxidase in multilayers onto porous hollow-fiber membrane. J. Membr. Sci. 191, 207–213 (2001)CrossRefGoogle Scholar
  81. 81.
    S. Miura, N. Kubota, H. Kawakita, K. Saito, K. Sugita, K. Watanabe, T. Sugo, High-throughput of hydrolysis of starch during permeation across amylase-immobilized porous hollow-fiber membrane. Radiat. Phys. Chem. 63, 143–149 (2002)CrossRefGoogle Scholar
  82. 82.
    A. Fujita, H. Kawakita, K. Saito, K. Sugita, M. Tamada, T. Sugo, Production of tripeptide from gelatin using collagenase-immobilized porous hollow-fiber membrane. Biotechnol. Prog. 19, 1365–1367 (2003)CrossRefGoogle Scholar
  83. 83.
    I. Koguma, M. Nakamura, K. Saito, K. Sugita, S. Kiyohara, T. Sugo, Chiral separation of DL-tryptophan using bovine-serum-albumin-multilayered porous hollow-fiber membrane. Kagaku Kogaku Ronbunsyu 24, 458–461 (1998)CrossRefGoogle Scholar
  84. 84.
    M. Nakamura, S. Kiyohara, K. Saito, K. Sugita, T. Sugo, Chiral separation of DL-tryptophan using porous membranes containing multilayered bovine serum albumin crosslinked with glutaraldehyde. J. Chromatogr. A 822, 53–58 (1998)CrossRefGoogle Scholar
  85. 85.
    S. Kiyohara, M. Nakamura, K. Saito, K. Sugita, T. Sugo, Binding of DL-tryptophan to BSA adsorbed in multilayers by polymer chains grafted onto a porous hollow-fiber membrane in a permeation mode. J. Membr. Sci. 152, 143–149 (1999)CrossRefGoogle Scholar
  86. 86.
    M. Nakamura, S. Kiyohara, K. Saito, K. Sugita, T. Sugo, High resolution of DL-tryptophan at high flow rates using a bovine serum albumin-multilayered porous hollow-fiber membrane. Anal. Chem. 71, 1323–1325 (1999)CrossRefGoogle Scholar
  87. 87.
    H. Ito, M. Nakamura, K. Saito, K. Sugita, T. Sugo, Comparison of L-tryptophan binding capacity of BSA captured by a polymer brush with that of BSA adsorbed onto a gel network. J. Chromatogr. A 925, 41–47 (2001)CrossRefGoogle Scholar
  88. 88.
    K. Saito, K. Saito, K. Sugita, M. Tamada, T. Sugo, Convection-aided collection of metal ions using chelating porous flat-sheet membranes. J. Chromatogr. A 954, 277–283 (2002)CrossRefGoogle Scholar
  89. 89.
    K. Yamashiro, K. Miyoshi, R. Ishihara, D. Umeno, K. Saito, T. Sugo, S. Yamada, H. Fukunaga, M. Nagai, High-throughput solid-phase extraction of metal ions using an iminodiacetate chelating porous disk prepared by graft polymerization. J. Chromatogr. A 1176, 37–42 (2007)CrossRefGoogle Scholar
  90. 90.
    G. Wada, R. Ishihara, K. Miyoshi, D. Umeno, K. Saito, S. Asai, S. Yamada, H. Hirota, Effect of chelating group density of crosslinked graft chain on dynamic binding capacity for metal ions. J. Ion Exchange 22, 47–52 (2011)CrossRefGoogle Scholar
  91. 91.
    G. Wada, R. Ishihara, K. Miyoshi, D. Umeno, K. Saito, S. Asai, S. Yamada, H. Hirota, Crosslinked-chelating porous sheet with high dynamic binding capacity of metal ions. Solv. Extr. Ion Exch. 31, 210–220 (2013)CrossRefGoogle Scholar
  92. 92.
    K. Yamashiro, K. Miyoshi, R. Ishihara, K. Yasuno, D. Umeno, K. Saito, T. Sugo, S. Yamada, M. Sugiura, H. Fukunaga, M. Nagai, Protein purification using immobilized metal affinity porous sheet. J. Ion Exchange 19, 101–106 (2008)CrossRefGoogle Scholar
  93. 93.
    S. Asai, M. Magara, S. Sakurai, N. Shinohara, K. Saito, T. Sugo, Rapid separation of actinides using an anion-exchange polymer chain grafted onto a porous sheet. J. Ion Exchange 18, 486–491 (2007)CrossRefGoogle Scholar
  94. 94.
    R. Ishihara, D. Umeno, K. Saito, S. Asai, S. Sakurai, N. Shinohara, T. Sugo, Preparation of extractant-impregnated porous sheets for high-speed separation of radionuclides. J. Ion Exchange 18, 480–485 (2007)CrossRefGoogle Scholar
  95. 95.
    S. Asai, M. Magara, N. Shinohara, S. Yamada, M. Nagai, K. Miyoshi, K. Saito, Separation of U and Pu in spent nuclear fuel sample using anion-exchange-group-introduced porous polymer sheet for ICP-MS determination. Talanta 77, 695–700 (2008)CrossRefGoogle Scholar
  96. 96.
    S. Asai, T. Kimura, K. Miyoshi, K. Saito, S. Yamada, H. Hirota, Application of diethylamino-group-containing porous-polymeric-disk-packed cartridge to separation of U in urine sample. J. Ion Exchange 21, 334–339 (2010)Google Scholar
  97. 97.
    S. Asai, Y. Hanzawa, M. Konda, D. Suzuki, M. Magara, T. Kimura, R. Ishihara, K. Saito, S. Yamada, H. Hirota, Preparation of microvolume anion-exchange cartridge for inductively coupled plasma mass spectrometry-based determination of 237Np content in spent nuclear fuel. Anal. Chem. 88, 3149–3155 (2016)CrossRefGoogle Scholar
  98. 98.
    R. Ishihara, S. Asai, S. Otosaka, S. Yamada, H. Hirota, K. Miyoshi, D. Umeno, K. Saito, Dependence of lanthanide-ion binding performance on HDEHP concentration in HDEHP impregnation to porous sheet. Solv. Extr. Ion Exch. 30, 171–180 (2012)CrossRefGoogle Scholar
  99. 99.
    R. Tanaka, R. Ishihara, K. Miyoshi, D. Umeno, K. Saito, S. Asai, S. Yamada, H. Hirota, Modification of a hydrophobic-ligand-containing porous sheet using tri-n-octylphosphine oxide, and its adsorption/elution of bismuth ions. React. Funct. Polym. 70, 986–990 (2010)CrossRefGoogle Scholar
  100. 100.
    J. Zhang, Y. Nozaki, Behavior of rare earth elements in seawater at the ocean margin: study along the slopes of the Sagami and Nankai troughs near Japan. Geochim. Cosmochim. Acta 62, 1307–1317 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Chiba UniversityChibaJapan
  2. 2.KJK Co.,Ltd.TakasakiJapan
  3. 3.KJK Co.,Ltd.TakasakiJapan

Personalised recommendations