Scientific Findings on Graft Chains

Chapter

Abstract

A graft chain immobilized onto a trunk polymer by radiation-induced graft polymerization has a free end and an immobile end. Depending on the formation site, the graft chain is divided into a polymer brush extending from the surface of the trunk polymer and a polymer root entering the matrix of the trunk polymer. The graft chain will extend or shrink depending on the density of the charged group of the graft chain and the ionic strength of the liquid surrounding the graft chain. An extended polymer brush captures proteins in multilayers via multipoints. When a graft chain is immobilized over a porous membrane, the permeability of the liquid through the porous membrane reflects the static and dynamic behavior of the graft chain. Also, the graft-chain phase diffusion of metal ions and proteins occurs, driven by the gradient of the number of ions and proteins bound by the graft chain.

Keywords

Polymer brush Polymer root Multilayering of protein Graft-chain phase diffusion 

References

  1. 1.
    T. Kawai, K. Saito, W. Lee, Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. J. Chromatogr. B 790, 131–142 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Asai, K. Miyoshi, K. Saito, Modification of a porous sheet (MAPS) for the high-performance solid-phase extraction of trace and ultratrace elements by radiation-induced graft polymerization. Anal. Sci. 26, 649–658 (2010)CrossRefGoogle Scholar
  3. 3.
    S. Uchiyama, R. Ishihara, D. Umeno, K. Saito, S. Yamada, H. Hirota, S. Asai, Determination of mole percentages of brush and root of polymer chain grafted onto porous sheet. J. Chem. Eng. Japan 46, 414–419 (2013)CrossRefGoogle Scholar
  4. 4.
    R. Shibahara, K. Hagiwara, D. Umeno, K. Saito, T. Sugo, Preparation of size-exclusion polymer chain grafted onto the pore surface of a porous hollow-fiber membrane. Membrane (Maku) 34, 220–226 (2009)CrossRefGoogle Scholar
  5. 5.
    R. Ishihara, S. Uchiyama, H. Ikezawa, S. Yamada, H. Hirota, D. Umeno, K. Saito, Effect of dose on mole percentages of polymer brush and root grafted onto porous polyethylene sheet by radiation-induced graft polymerization. Ind. Eng. Chem. Res. 52, 12582–12586 (2013)CrossRefGoogle Scholar
  6. 6.
    A. Nide, S. Kawai-Noma, D. Umeno, K. Saito, Reduction of buffer volume used in regeneration of anion-exchange porous hollow-fiber membrane by site-controlled introduction of anion-exchange group into graft chain. Membrane (Maku) 39, 258–263 (2014)CrossRefGoogle Scholar
  7. 7.
    N. Kubota, M. Kounosu, K. Saito, K. Sugita, K. Watanabe, T. Sugo, Control of phenyl-group site introduced on the graft chain for hydrophobic interaction chromatography. React. Polym. 29, 115–122 (1996)CrossRefGoogle Scholar
  8. 8.
    S. Matoba, S. Tsuneda, K. Saito, T. Sugo, Highly efficient enzyme recovery using a porous membrane with immobilized tentacle polymer chains. Nat. Biotechnol. 13, 795–797 (1995)CrossRefGoogle Scholar
  9. 9.
    N. Sasagawa, K. Saito, K. Sugita, S. Kunori, T. Sugo, Ionic crosslinking of SO3H-group-containing graft chains helps to capture lysozyme in a permeation mode. J. Chromatogr. A 848, 161–168 (1999)CrossRefGoogle Scholar
  10. 10.
    K. Miyoshi, K. Saito, T. Shiraishi, T. Sugo, Introduction of taurine into polymer brush grafted onto porous hollow-fiber membrane. J. Membr. Sci. 264, 97–103 (2005)CrossRefGoogle Scholar
  11. 11.
    K. Hagiwara, S. Yonedu, K. Saito, T. Shiraishi, T. Sugo, T. Tojyo, E. Katayama, High-performance purification of gelsolin from plasma using anion-exchange porous hollow-fiber membrane. J. Chromatogr. B 821, 153–158 (2005)CrossRefGoogle Scholar
  12. 12.
    S. Yonedu, K. Saito, E. Katayama, T. Tojyo, T. Shiraishi, T. Sugo, Affinity elution of gelsolin adsorbed onto an anion-exchange porous membrane. Membrane (Maku) 30, 269–274 (2005)CrossRefGoogle Scholar
  13. 13.
    T. Kawai, K. Sugita, K. Saito, T. Sugo, Extension and shrinkage of polymer brush grafted onto porous membrane induced by protein binding. Macromolecules 33, 1306–1309 (2000)CrossRefGoogle Scholar
  14. 14.
    T. Mizota, S. Tsuneda, K. Saito, T. Sugo, Hydrolysis of methyl acetate and sucrose in SO3H-group-containing grafted polymer chain prepared by radiation-induced graft polymerization. Ind. Eng. Chem. Res. 33, 2215–2219 (1994)CrossRefGoogle Scholar
  15. 15.
    T. Mizota, S. Tsuneda, K. Saito, T. Sugo, Sulfonic acid catalysts prepared by radiation-induced graft polymerization. J. Catalysis 149, 243–245 (1994)CrossRefGoogle Scholar
  16. 16.
    S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, K. Makuuchi, Simple introduction of sulfonic acid group onto polyethylene by radiation-induced cografting of sodium styrenesulfonate with hydrophilic monomers. Ind. Eng. Chem. Res. 32, 1464–1470 (1993)CrossRefGoogle Scholar
  17. 17.
    T. Sasaki, S. Uchiyama, K. Fujiwara, T. Sugo, D. Umeno, K. Saito, Similarity of rare earth extraction by acidic extractantbis(2-ethylhexyl) phosphate (HDEHP) supported on a dodecylamino-group-containing graft chain and by HDEHP dissolved in dodecane. Kagaku Kogaku Ronbunsyu 40, 404–409 (2014)CrossRefGoogle Scholar
  18. 18.
    T. Sasaki, S. Uchiyama, K. Fujiwara, T. Sugo, D. Umeno, K. Saito, Nd/Dy resolution by SPE-based elution chromatography with bis(2–ethylhexyl) phosphate (HDEHP)-impregnated fiber-packed bed. Kagaku Kogaku Ronbunsyu 41, 220–227 (2015)CrossRefGoogle Scholar
  19. 19.
    G. Wada, R. Ishihara, K. Miyoshi, D. Umeno, K. Saito, S. Asai, S. Yamada, H. Hirota, Effect of chelating group density of crosslinked graft chain on dynamic binding capacity for metal ions. J. Ion Exchange 22, 47–52 (2011)CrossRefGoogle Scholar
  20. 20.
    K. Uezu, K. Saito, S. Furusaki, T. Sugo, I. Ishigaki, Radicals contributing to preirradiation graft polymerization onto porous polyethylene. Radiat. Phy. Chem. 40, 31–36 (1992)Google Scholar
  21. 21.
    T. Miyazawa, Y. Asari, K. Miyoshi, D. Umeno, K. Saito, T. Nagatani, N. Yoshikawa, R. Motokawa, S. Koizumi, Development of novel ion-exchange membranes for electrodialysis of seawater by electron-beam-induced graft polymerization (IV) Polymeric structures of cation-exchange membranes based on nylon-6 film. Bull. Sea Water Sci. Jpn. 64, 360–365 (2010)Google Scholar
  22. 22.
    M. Sugiyama, S. Goto, T. Kojima, K. Fujiwara, T. Sugo, D. Umeno, K. Saito, Impregnation process of insoluble cobalt ferrocyanide onto anion-exchange fiber prepared by radiation-induced graft polymerization. Radioisotopes 64, 219–228 (2015)CrossRefGoogle Scholar
  23. 23.
    S. Goto, S. Umino, W. Amakai, K. Fujiwara, T. Sugo, T. Kojima, S. Noma-Kawai, D. Umeno, K. Saito, Impregnation structure of cobalt ferrocyanidemicroparticles by the polymer chain grafted onto nylon fiber. J. Nucl. Sci. Tech. 53, 1251–1255 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Chiba UniversityChibaJapan
  2. 2.KJK Co.,Ltd.TakasakiJapan
  3. 3.KJK Co.,Ltd.TakasakiJapan

Personalised recommendations