Fundamentals of Radiation-Induced Graft Polymerization

  • Kyoichi Saito
  • Kunio Fujiwara
  • Takanobu Sugo


Among the various graft polymerization methods, radiation-induced graft polymerization is powerful in that various forms of existing polymers can be selected as trunk polymers and converted into polymeric adsorbents. In particular, preirradiation graft polymerization has an advantage that the graft polymerization step can be separated from the irradiation step, which will enhance the industrial production of graft-type materials. The grafting of an epoxy-group-containing vinyl monomer, glycidyl methacrylate, enables the introduction of different functional moieties such as ion-exchange and chelate-forming groups, and hydrophobic and affinity ligands. In this chapter, batch and flow-through modes are described as methods of evaluating the performance of adsorbents for metal ions and proteins.


Preirradiation graft polymerization Glycidyl methacrylate Ion-exchange group Chelate-forming group Affinity ligand 


  1. 1.
    K. Saito, T. Sugo, High-performance polymeric materials for separation and reaction, prepared by radiation-induced graft polymerization. in Radiation Chemistry: Present Status and Future Trends, eds. by C.D. Jonah, M. Rao (Elsevier, 2001), pp. 671–704Google Scholar
  2. 2.
    S. Sugiyama, S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, K. Makuuchi, Attachment of sulfonic acid groups to various shapes of PE, PP and PTFE by radiation-induced graft polymerization. React. Polym. 21, 187–191 (1993)CrossRefGoogle Scholar
  3. 3.
    K. Saito, S. Tsuneda, M. Kim, N. Kubota, K. Sugita, T. Sugo, Radiation-induced graft polymerization is the key to develop high-performance functional materials for protein purification. Radiat. Phys. Chem. 54, 517–525 (1999)CrossRefGoogle Scholar
  4. 4.
    K. Saito, Charged polymer brush grafted onto porous hollow-fiber membrane improves separation and reaction in biotechnology. Sep. Sci. Technol. 37, 535–554 (2002)CrossRefGoogle Scholar
  5. 5.
    T. Kawai, K. Saito, W. Lee, Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. J. Chromatogr. B 790, 131–142 (2003)CrossRefGoogle Scholar
  6. 6.
    K. Saito, Preparation of porous adsorbers and supports most favorable for separation by using radiation-induced graft polymerization. Kobunshi Ronbunshu 71, 302–312 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Matoba, S. Tsuneda, K. Saito, T. Sugo, Highly efficient enzyme recovery using a porous membrane with immobilized tentacle polymer chains. Nat. Biotechnol. 13, 795–797 (1995)CrossRefGoogle Scholar
  8. 8.
    K. Uezu, K. Saito, S. Furusaki, T. Sugo, I. Ishigaki, Radicals contributing to preirradiation graft polymerization onto porous polyethylene. Radiat. Phy. Chem. 40, 31–36 (1992)Google Scholar
  9. 9.
    S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, J. Okamoto, Metal collection using chelating hollow-fiber membrane. J. Membr. Sci. 58, 221–234 (1991)CrossRefGoogle Scholar
  10. 10.
    H. Yamagishi, K. Saito, S. Furusaki, T. Sugo, I. Ishigaki, Introduction of a high-density chelating group into a porous membrane without lowering the flux. Ind. Eng. Chem. Res. 30, 2234–2237 (1991)CrossRefGoogle Scholar
  11. 11.
    H. Shinano, S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, Ion exchange of lysozyme during permeation across a microporous sulfopropyl-group-containing hollow fiber. Biotechnol. Prog. 9, 193–198 (1993)CrossRefGoogle Scholar
  12. 12.
    S. Tsuneda, H. Shinano, K. Saito, S. Furusaki, T. Sugo, Binding of lysozyme onto a cation-exchange microporous membrane containing tentacle-type grafted polymer branches. Biotechnol. Prog. 10, 76–81 (1994)CrossRefGoogle Scholar
  13. 13.
    M. Kim, J. Kojima, K. Saito, S. Furusaki, T. Sugo, Reduction of nonselective adsorption of proteins by hydrophilization of microfiltration membranes by radiation-induced grafting. Biotechnol. Prog. 10, 114–120 (1994)CrossRefGoogle Scholar
  14. 14.
    S. Matsuno, K. Iwanade, D. Umeno, K. Saito, H. Ito, M. Sakamoto, Carboxybetaine-group immobilized onto pore surface reduced protein adsorption to porous membrane. Membrane (Maku) 35, 86–92 (2010)CrossRefGoogle Scholar
  15. 15.
    S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, K. Makuuchi, Simple introduction of sulfonic acid group onto polyethylene by radiation-induced cografting of sodium styrenesulfonate with hydrophilic monomers. Ind. Eng. Chem. Res. 32, 1464–1470 (1993)CrossRefGoogle Scholar
  16. 16.
    J. Kalal, F. Svec, V. Marousek, Reactions of epoxide groups of glycidyl methacrylate copolymers. J. Polym. Sci. 47, 155–166 (1974)Google Scholar
  17. 17.
    H. Hrudkova, F. Svec, J. Kalal, Reactive polymers. XIV. Hydrolysis of the epoxide groups of copolymer glycidyl methacrylate-ethylene dimethacrylate. Br. Polym. J. 9, 238–240 (1977)CrossRefGoogle Scholar
  18. 18.
    T.B. Tennikova, M. Bleha, F. Svec, T.V. Almazova, B.G. Belenkii, High-performance membrane chromatography of proteins. A novel method of protein separation. J. Chromatogr. 555, 97–107 (1991)CrossRefGoogle Scholar
  19. 19.
    I. Koguma, K. Sugita, K. Saito, T. Sugo, Multilayer binding of proteins to polymer chains grafted onto porous hollow-fiber membranes containing different anion-exchange groups. Biotechnol. Prog. 16, 456–461 (2000)CrossRefGoogle Scholar
  20. 20.
    S. Nishiyama, A. Goto, K. Saito, K. Sugita, M. Tamada, T. Sugo, T. Funami, Y. Goda, S. Fujimoto, Concentration of 17β-estradiol using an immunoaffinity porous hollow-fiber membrane. Anal. Chem. 74, 4933–4936 (2002)CrossRefGoogle Scholar
  21. 21.
    K. Saito, M. Ito, H. Yamagishi, S. Furusaki, T. Sugo, J. Okamoto, Novel hollow-fiber membrane for the removal of metal ion during permeation: preparation by radiation-induced cografting of a cross-linking agent with reactive monomer. Ind. Eng. Chem. Res. 28, 1808–1812 (1989)CrossRefGoogle Scholar
  22. 22.
    K. Saito, K. Saito, K. Sugita, M. Tamada, T. Sugo, Cation-exchange porous hollow-fiber membrane prepared by radiation-induced cografting of GMA and EDMA which improved pure water permeability and sodium ion adsorptivity. Ind. Eng. Chem. Res. 41, 5686–5691 (2002)CrossRefGoogle Scholar
  23. 23.
    G. Wada, R. Ishihara, K. Miyoshi, D. Umeno, K. Saito, S. Asai, S. Yamada, H. Hirota, Crosslinked-chelating porous sheet with high dynamic binding capacity of metal ions. Solv. Extr. Ion Exch. 31, 210–220 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Shibahara, K. Hagiwara, D. Umeno. K. Saito, T. Sugo, Preparation of size-exclusion polymer chain grafted onto the pore surface of a porous hollow-fiber membrane. Membrane (Maku) 34, 220–226 (2009)Google Scholar
  25. 25.
    S. Uchiyama, R. Ishihara, D. Umeno, K. Saito, S. Yamada, H. Hirota, S. Asai, Determination of mole percentages of brush and root of polymer chain grafted onto porous sheet. J. Chem. Eng. Japan 46, 414–419 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Konishi, K. Saito, S. Furusaki, T. Sugo, Sorption kinetics of cobalt in chelating porous membrane. Ind. Eng. Chem. Res. 31, 2722–2727 (1992)CrossRefGoogle Scholar
  27. 27.
    S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, High-throughput processing of protein using a porous and tentacle anion-exchange membrane. J. Chromatogr. A 689, 211–218 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Chiba UniversityChibaJapan
  2. 2.KJK Co., Ltd.TakasakiJapan
  3. 3.KJK Co., Ltd.TakasakiJapan

Personalised recommendations