Skip to main content

Use of Plant Secondary Metabolites as Nutraceuticals for Treatment and Management of Cancer: Approaches and Challenges

  • Chapter
  • First Online:
Anticancer plants: Properties and Application

Abstract

Nowadays cancer has become a common and life-threatening disease, claiming millions of lives and adding many more millions of new cases every year globally. Due to increasing incidences of cancer, a new trend is emerging globally due to accessibility of information on the internet; a lot of cancer patients’ claimed to be “cancer survivor” by use of dietary supplements or nutraceuticals. Nutraceuticals are rich source of nutrients or part of a food that has a medical or health benefit, including the prevention and treatment of diseases. In this chapter, we will discuss the most important nutraceuticals as a source of anticancer agents, such as green tea, chili, pepper, saffron, turmeric, soy, black pepper, fenugreek, cloves, and ginger. These agents are the source of phytomolecules, such as curcumin, crocin, crocetin, capsaicin, diosgenin, isoflavones, resveratrol, epigallocatechin gallate, piperine, eugenol, and gingerol. It has been reported that these phytomolecules are able to prevent, reverse, or delay the carcinogenic process. Over the decades, attention over these nutraceuticals has been increased due to their promising effects on tumor cells. These nutraceuticals exhibit anticancer properties by induction of apoptosis, DNA damage, causing G2/M arrest, inhibition of proliferation, migration and invasion of cancer cells, and sensitizing cancer cells to chemotherapy and radiotherapy. The aim of this chapter is to focus on the sources of nutraceutical compounds and their importance in the management of cancer. Moreover, the mechanism of action is also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhamed S, Yokoyama S, Refaat A, Ogura K, Yagita H, Awale S, Saiki I (2014) Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res 34:1893–1899

    CAS  PubMed  Google Scholar 

  • Abdullaev FI (2003) Crocus sativus against cancer. Arch Med Res 34:354–363

    Article  PubMed  Google Scholar 

  • ACS (2009) Cancer facts and figures 2009. American Cancer Society, Atlanta

    Google Scholar 

  • ACS (2015) Global cancer facts and figures 2015. American Cancer Society, Atlanta

    Google Scholar 

  • Aggarwal BB (2010) Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 30:173–199

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aggarwal BB, Kunnumakkara AB, Harikumar KB, Tharakan ST, Sung B, Anand P (2008) Potential of spice-derived phytochemicals for cancer prevention. Planta Med 74:1560–1569

    Article  CAS  PubMed  Google Scholar 

  • Akimoto M, Lizuka M, Kanematsu R, Yoshida M, Takenaga K (2015) Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS One 10:e0126605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Al-Daghri NM, Alokail MS, Alkharfy KM, Mohammed AK, Abd-Alrahman SH, Yakout SM, Amer OE, Krishnaswamy S (2012) Fenugreek extract as an inducer of cellular death via autophagy in human T lymphoma Jurkat cells. BMC Compl Altern Med 12:202. https://doi.org/10.1186/1472-6882-12-202

  • Alsemari A, Alkhodairy F, Aldakan A, Al-Mohanna M, Bahoush E, Shinwari Z, Alaiya A (2014) The selective cytotoxic anti-cancer properties and proteomic analysis of Trigonella foenum-graecum. BMC Compl Altern Med 14:114. https://doi.org/10.1186/1472-6882-14-114

  • Amin A, Bajbouj K, Koch A, Gandesiri M, Schneider-Stock R (2015) Defective autophagosome formation in p53-null colorectal cancer reinforces crocin-induced apoptosis. Int J Mol Sci 16:1544–1561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arnonson JK (2017) Defining ‘nutraceuticals’: neither nutritious nor pharmaceutical. Br J Clin Pharmacol 83:8–19

    Article  Google Scholar 

  • Bachmeier BE, Killian P, Pfeffer U, Nerlich AG (2010) Novel aspects for the application of curcumin in chemoprevention of various cancers. Front Biosci 2:697–717

    Article  Google Scholar 

  • Bakshi H, Sam S, Rozati R, Sultan P, Islam T, Rathore B, Lone Z, Sharma M, Triphati J, Saxena RC (2010) DNA fragmentation and cell cycle arrest: a Hallmark of apoptosis induced by crocin from Kashmiri saffron in a human pancreatic cancer cell line. Asian Pac J Cancer Prev 11:675–679

    PubMed  Google Scholar 

  • Bathaie SZ, Hoshyar R, Miri H, Sadeghizadeh M (2013) Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem Cell Biol 91:397–403

    Article  CAS  PubMed  Google Scholar 

  • Bezerra DP, de Castro FO, Alves APNN, Pessoa C, de Moraes MO, Silveira ER, Lima MA, Elmiro FJ, de Alencar NM, Mesquita RO, Lima MW, Costa-Lotufo LV (2008) In vitro and in vivo antitumor effect of 5-FU combined with piplartine and piperine. J Appl Toxicol 28:156–163

    Article  CAS  PubMed  Google Scholar 

  • Bhandari PR (2015) Crocus sativus L. (saffron) for cancer chemoprevention: a mini review. J Tadit Compl Med 5:81–87

    Article  PubMed  PubMed Central  Google Scholar 

  • Bull E (2000) What is nutraceutical. Pharm J 265:57–58

    Google Scholar 

  • Butt MS, Sultan MT (2009) Green tea: nature’s defense against malignancies. Crit Rev Food Sci Nutr 49:463–473

    Article  CAS  PubMed  Google Scholar 

  • Cao SW, Chen HJ, Xiang SJ, Hong JH, Weng LD, Zhu HX, Liu Q (2015) Anti-cancer effects and mechanisms of capsaicin in chili peppers. American J Plant Sci 6:3075–3081

    Article  CAS  Google Scholar 

  • Chatelain K, Phippen S, McCabe J, Teeters CA, O’Malley S, Kingsley K (2008) Cranberry and grape seed extracts inhibit the proliferative phenotype of oral squamous cell carcinomas. eCAM 2008:nen047

    Google Scholar 

  • Chryssanthi DG, Lamari FN, Iatrou G, Pylara A, Karamanos NK, Cordopatis P (2007) Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res 27:357–362

    PubMed  CAS  Google Scholar 

  • Clark R, Lee SH (2016) Anticancer properties of capsaicin against human cancer. Anticancer Res 36:837–843

    PubMed  CAS  Google Scholar 

  • Clifford MN, Van der Hooft JJ, Crozier A (2013) Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. Am J Clin Nutr 98:S1619–S1630

    Article  CAS  Google Scholar 

  • Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das L, Bhaumik E, Raychaudhari U (2012) Role of nutraceuticals in human health. J Food Sci Technol 49:173–183

    Article  CAS  PubMed  Google Scholar 

  • De Amicis F, Perri A, Vizza D, Russo A, Panno ML, Bonofiglio D, Ando S (2013) Epigallocatechin gallate inhibits growth and epithelial-to-mesenchymal transition in human thyroid carcinoma cell lines. J Cell Physiol 228:2054–2062

    Article  CAS  PubMed  Google Scholar 

  • DeBono A, Capuano B, Scammells PJ (2015) Progress toward the development of noscapine and derivatives as anticancer agents. J Med Chem 58:5699–5727

    Article  CAS  PubMed  Google Scholar 

  • Del Follo-Martinez A, Banerjee N, Li X, Safe S, Mertens-Talcott S (2013) Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr Cancer 65:494–504

    Article  CAS  PubMed  Google Scholar 

  • DeVita VT, Hellman S, Rosenberg SA (2008) Cancer: principles and practice of oncology, 8th edn. Lippincott-Williams & Wilkins, Philadelphia

    Google Scholar 

  • Déziel BA, Patel K, Neto C, Gottschall-Pass K, Hurta RA (2010) Proanthocyanidins from the American cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways. J Cell Biochem 111:742–754

    Article  PubMed  Google Scholar 

  • Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80:1744–1756

    Article  CAS  Google Scholar 

  • Do MT, Kim HG, Choi JH, Khanal T, Park BH, Tran TP, Jeong TC, Jeong HG (2013) Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem 141:2591–2599

    Article  PubMed  CAS  Google Scholar 

  • Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 127:515–520

    Article  PubMed  CAS  Google Scholar 

  • Dureja H, Kaushik D, Kumar V (2003) Developments in nutraceuticals. Indian J Pharm 35:363–372

    Google Scholar 

  • Dwivedi V, Shrivastava R, Hussain S, Ganguly C, Bharadwaj M (2011) Comparative anticancer potential of clove (Syzygium aromaticum)-an Indian spice against cancer cell lines of various anatomical origin. Asian Pac J Cancer Prev 12:1989–1993

    PubMed  Google Scholar 

  • El-Rayes BF, Philip PA, Sarkar FH, Shields AF, Ferris AM, Hess K, Kaseb AO, Javle MM, Varadhachary GR, Wolff RA, Abbruzzese JL (2011) A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer. Investig New Drugs 29:694–699

    Article  CAS  Google Scholar 

  • Farina HG, Pomies M, Alonso DF, Gomez DE (2006) Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncol Rep 16:885–891

    PubMed  CAS  Google Scholar 

  • Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985) Medicinal plants in therapy. Bull World Health Organ 63:965–981

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. https://doi.org/10.1002/ijc.29210

    Article  PubMed  CAS  Google Scholar 

  • Fernando W, Rupasinghe HPV (2013) Anticancer properties of phytochemicals present in medicinal plants of north America. In: Kulka M (ed) Using old solutions to new problems-natural drug discovery in the 21st century. InTech, Rijeka, p 424. https://doi.org/10.5772/55859

    Google Scholar 

  • Franke AA, Halm BM, Kakazu K, Li X, Custer LJ (2009) Phytoestrogenic isoflavonoids in epidemiologic and clinical research. Drug Test Ana 1:14–21

    Article  CAS  Google Scholar 

  • Gagliano N, Aldini G, Colombo G, Rossi R, Colombo R, Gioia M, Milzani A, Dalle-Donne I (2010) The potential of resveratrol against human gliomas. Anticancer Drugs 21:140–150

    Article  PubMed  CAS  Google Scholar 

  • Garg RC (2016) Fenugreek: multiple health benefits. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic, Tokyo, pp 599–617

    Chapter  Google Scholar 

  • Gidding CEM, Kellie SJ, Kamps WA, de Graaf SSN (1999) Vincristine revisited. Crit Rev Oncology 29:267–287

    Article  CAS  Google Scholar 

  • Goel A, Jhurani S, Aggarwal BB (2008) Multi-targeted therapy by curcumin: how spicy is it? Mol Nutr Food Res 52:1010–1030

    Article  PubMed  CAS  Google Scholar 

  • Greenshields AL, Doucette CD, Sutton KM, Madera L, Annan H, Yaffe PB, Knickle AF, Dong Z, Hoskin DW (2015) Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett 357:129–140

    Article  PubMed  CAS  Google Scholar 

  • Grimble RF (2003) Nutritional therapy for cancer cachexia. Gut 52:1391–1392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hardy G (2000) Nutraceuticals and functional foods: introduction and meaning. Nutrition 16:688–689

    Article  PubMed  CAS  Google Scholar 

  • Hazgui S, Bonnomet A, Nawrocki-Raby B, Milliot M, Terryn C, Cutrona J, Polette M, Birembaut P, Zahm JM (2008) Epigallocatechin-3-gallate (EGCG) inhibits the migratory behavior of tumor bronchial epithelial cells. Respir Res 9:33. https://doi.org/10.1186/1465-9921-9-33

  • Hooper L, Ryder JJ, Kurzer MS, Lampe JW, Messina MJ, Phipps WR, Cassidy A (2009) Effects of soy protein and isoflavones on circulating hormone concentrations in pre- and post-menopausal women: a systematic review and meta-analysis. Hum Reprod Update 15:423–440

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horie S (2012) Chemoprevention of prostate cancer: soy isoflavones and curcumin. Korean J Urol 53:665–672

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh TC, Wu JM (2010) Resveratrol: biological and pharmaceutical properties as anticancer molecule. Bio Factors 36:360–369

    CAS  Google Scholar 

  • Issa AY, Volate SR, Muga SJ, Nitcheva D, Smith T, Wargovich MJ (2007) Green tea selectively targets initial stages of intestinal carcinogenesis in the AOM-ApcMin mouse model. Carcinogenesis 28:1978–1984

    Article  CAS  PubMed  Google Scholar 

  • Iwano H, Ujita W, Nishikawa M, Ishii S, Inoue H, Yokota H (2014) Effect of dietary eugenol on xenobiotic metabolism and mediation of UDP and glucuronosyltransferase and cytochrome P4501A1 expression in rat liver. Int J Food Sci Nutr 65:241–244

    Article  CAS  PubMed  Google Scholar 

  • Jaganathan SK, Supriyanto E (2012) Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 17:6290–6304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kakarala M, Brenner D, Korkaya H, Cheng C, Tazi K, Ginestier C, Liu S, Dontu G, Wicha MS (2010) Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 122:777–785

    Article  CAS  PubMed  Google Scholar 

  • Karna P, Chagani S, Gundala SR, Rida P, Asif G, Sharma V, Gupta MV, Aneja R (2012) Benefits of whole ginger extract in prostate cancer. Br J Nutr 107:473–484

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Long NK, Makita H, Toida M, Yamashita T, Hatakeyama D, Hara A, Mori H, Shibata T (2008) Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer 99:647–654

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khalil MIM, Ibrahim MM, El-Galy GA, Sultan AS (2015) Trigonella foenum (Fenugreek) induced apoptosis in hepatocellular carcinoma cell line, HepG2, mediated by upregulation of p53 and proliferating cell nuclear antigen. Biomed Res Int 2015:914645. https://doi.org/10.1155/2015/914645

  • Khan N, Afaq F, Mukhtar H (2007) Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis 28:233–239

    Article  PubMed  CAS  Google Scholar 

  • Khoja KK, Shaf G, Hasan TN, Syed NA, Al-Khalifa AS, Al-Assaf AH, Alshatwi AA (2011) Fenugreek, a naturally occurring edible spice, kills MCF-7 human breast cancer cells via an apoptotic pathway. Asian Pac J Cancer Prev 12:3299–3304

    PubMed  Google Scholar 

  • Kim JM, Noh EM, Kwon KB, Kim JS, You YO, Hwang JK, Hwang BM, Kim BS, Lee SH, Lee SJ, Jung SH, Youn HJ, Lee YR (2012) Curcumin suppresses the TPA-induced invasion through inhibition of PKC alpha-dependent MMP-expression in MCF-7 human breast cancer cells. Phytomedicine 19:1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Kinghorn AD, Pan L, Fletcher JN, Chai H (2011) The relevance of higher plants in lead compound discovery programs. J Nat Prod 74:1539–1555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koh T, Murakami Y, Tanaka S, Machino M, Onuma H, Kaneko M, Sugimoto M, Soga T, Tomita M, Sakagami H (2013) Changes of metabolic profiles in an oral squamous cell carcinoma cell line induced by eugenol. In Vivo 27:233–243

    CAS  PubMed  Google Scholar 

  • Kubatka P, Mojzis J, Pilatova M, Pec M, Kruzliak P (2016) Soy isoflavones in the breast cancer risk: from preclinical findings to clinical strategy. In: Ullah MF, Ahmad A (eds) Critical dietary factors in cancer chemoprevention. Springer, Switzerland, pp 213–238

    Chapter  Google Scholar 

  • Kundu JK, Na HK, Surh YJ (2009) Ginger-derived phenolic substances with cancer preventive and therapeutic potential. Forum Nut 61:182–192

    Article  CAS  Google Scholar 

  • Kuo CL, Wu SY, Ip SW, Wu PP, Yu CS, Yang JS, Chen PY, Wu SH, Chung JG (2011) Apoptotic death in curcumin-treated NPC-TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase-3-dependent signaling responses. Int J Oncol 39:319–328

    CAS  PubMed  Google Scholar 

  • Kwon SJ, Song BH (2011) Meta-analysis for effect of dietary isoflavones on breast density and hot flush suppression. Korean J Microbiol Biotechnol 39:224–237

    CAS  Google Scholar 

  • Lakshman M, Xu L, Ananthanarayanan V, Cooper J, Takimoto CH, Helenowski I, Pelling JC, Bergan RC (2008) Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Res 68:2024–2032

    Article  PubMed  CAS  Google Scholar 

  • Larsen CA, Dashwood RH (2010) Epigallocatechin-3-gallate inhibits Met signaling, proliferation, and invasiveness in human colon cancer cells. Arch Biochem Biophys 501:52–57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lau JK, Brown CK, Dom AM, Witte TR, Thornhill BA, Crabtree CM, Perry HE, Brown JM, Ball JG, Creel RG, Damron CL, Rollyson WD, Stevenson CD, Hardman WE, Valentovic MA, Carpenter AB, Dasgupta P (2014) Capsaicin induces apoptosis in human small cell lung cancer via the TRPV6 receptor and the calpain pathway. Apoptosis 19:1190–1201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lechtenberg M, Schepmann D, Niehues M, Hellenbrand N, Wünsch B, Hensel A (2008) Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma1 (sigma-1) receptors. Planta Med 74:764–772

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Krisanapun C, Baek SJ (2010) NSAID-activated gene-1 as a molecular target for capsaicin induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 31:719–728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee S, Richardson RL, Dashwood RH, Baek SJ (2012) Capsaicin represses transcriptional activity of β-catenin in human colorectal cancer cells. J Nutr Biochem 23:646–655

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sarkar FH (2002) Gene expression profiles of genistein-treated PC3 prostate cancer cells. J Nutr 132:3623–3631

    Article  CAS  PubMed  Google Scholar 

  • Li F, Fernandez PP, Rajendran P, Hui KM, Sethi G (2010) Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemosensitization of human hepatocellular carcinoma cells. Cancer Lett 292:197–207

    Article  CAS  PubMed  Google Scholar 

  • Liu PL, Tsai JR, Charles AL, Hwang JJ, Chou SH, Ping YH, Lin FY, Chen YL, Hung CY, Chen WC, Chen YH, Chong IW (2010) Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases. Mol Nutr Food Res 54:S196–S204

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhu J, Tang L, Wen W, Lv S, Yu R (2014) Enhancement of vindoline and vinblastine production in suspension-cultured cells of Catharanthus roseus by artemisinic acid elicitation. World J Microbiol Biotechnol 30:175–180

    Article  CAS  PubMed  Google Scholar 

  • Manikandan P, Murugan RS, Priyadarsini RV, Vinothini G, Nagini S (2010) Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci 86:936–941

    Article  CAS  PubMed  Google Scholar 

  • Manikandan P, Vinothini G, Vidya Priyadarsini R, Prathiba D, Nagini S (2011) Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Investig New Drugs 29:110–117

    Article  CAS  Google Scholar 

  • Mann J (2002) Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2:143–148

    Article  CAS  PubMed  Google Scholar 

  • Mohansrinivasan M, Devi SC, Deori M, Biswas A, Naine JS (2015) Exploring the anticancer activity of grape seed extract on skin cancer cell lines A431. Braz Arch Biol Technol 58:540–546

    Article  CAS  Google Scholar 

  • Mondal S, Bandyopadhyay S, Ghosh MK, Mukhopadhyay S, Roy S, Mandal C (2012) Natural products: promising resources for cancer drug discovery. Anticancer Agents Med Chem 12:49–75

    Article  CAS  PubMed  Google Scholar 

  • Morrison WB (2010) Cancer chemotherapy: an annotated history. J Vet Intern Med 24:1249–1262

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Mazumdar M, Chakraborty S, Manna A, Saha S, Khan P, Bhattacharjee P, Guha D, Adhikary A, Mukhjerjee S, Das T (2014) Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β -catenin negative feedback loop. Stem Cell Res Ther 5:116. https://doi.org/10.1186/scrt506

    Article  CAS  Google Scholar 

  • Nasri H, Baradaran A, Shirzad H, Mahmoud RK (2014) New concepts in nutraceuticals as alternative for pharmaceuticals. Int J Prev Med 5:1487–1499

    PubMed  PubMed Central  Google Scholar 

  • Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477

    Article  CAS  PubMed  Google Scholar 

  • Oyagbemi AA, Saba AB, Azeez OI (2010) Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J Cancer 47:53–58

    Article  CAS  PubMed  Google Scholar 

  • Pandey M, Verma RK, Saraf SA (2010) Nutraceuticals: new era of medicine and health. Asian J Pharm Clin Res 3:11–15

    Google Scholar 

  • Papac RJ (2002) Origins of cancer therapy. Yale J Biol Med 74:391–398

    Google Scholar 

  • Park GH, Park JH, Song HM, Eo HJ, Kim KM, Lee JW, Lee MH, Cho K-H, Lee JK, Cho HJ, Jeong JB (2014) Anti-cancer activity of ginger (Zingiber officinale) leaf through the expression of activating transcription factor 3 in human colorectal cancer cells. BMC Compl Altern Med 14:408–415

    Google Scholar 

  • Percival SS (2009) Grape consumption supports immunity in animals and humans. J Nutr 139:S1801–S1805

    Article  CAS  Google Scholar 

  • Plengsuriyakaran T, Viyanant V, Eursitthichai V, Tesana S, Chaijaroenkul W, Itharat A, Na-Bangchang K (2012) Cytotoxicity, toxicity and anticancer activity of Zingiber officinale Roscoe against cholangiocarcinoma. AJCP 13:4597–4606

    Google Scholar 

  • Pradeep CR, Kuttan G (2002) Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clin Exp Metastasis 19:703–708

    Article  CAS  PubMed  Google Scholar 

  • Prasad S, Tyagi AK (2015) Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Pract 2015:142979. https://doi.org/10.1155/2015/142979

    Article  Google Scholar 

  • Raju J, Bird RP (2007) Diosgenin, a naturally occurring steroid saponin suppresses 3- hydroxy-3-methylglutaryl CoA reductase expression and induces apopto-sis in HCT-116 human colon carcinoma cells. Cancer Lett 255:194–204

    Article  CAS  PubMed  Google Scholar 

  • Raju J, Mehta R (2009) Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutr Cancer 61:27–35

    Article  CAS  PubMed  Google Scholar 

  • Rakha EA, Reis-Filho JS, Ellis IO (2010) Combinatorial biomarker expression in breast cancer. Breast Cancer Res Treat 120:293–308

    Article  CAS  PubMed  Google Scholar 

  • Ranzato E, Martinotti S, Magnelli V, Murer B, Biffo S, Mutti L, Burlando B (2012) Epigallocatechin-3-gallate induces mesothelioma cell death via H2O2-dependent T-type Ca2+ channel opening. J Cell Mol Med 16:2667–2678

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ranzato E, Martinitti S, Calabrese CM, Giorgio C (2014) Role of nutraceuticals in cancer therapy. J Food Res 3:18–25

    Article  Google Scholar 

  • Rao GV, Kumar S, Islam M, Saber EM (2008) Folk medicines for anticancer therapy-a current status. Cancer Ther 6:913–922

    CAS  Google Scholar 

  • Rao PV, Nallappan D, Madhavi K, Rahman S, Wei LJ, Gan SH (2016) Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxidative Med Cell Longev 2016:3685671. https://doi.org/10.1155/2016/3685671

    Article  CAS  Google Scholar 

  • Rhode J, Fogoros S, Zick S, Wahl H, Griffith KA, Huang J, Liu JR (2007) Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Compl Altern Med 7:44

    Google Scholar 

  • Roudebush P, Davenport DJ, Novotny BJ (2004) The use of nutraceuticals in cancer therapy. Vet Clin North Am Small Anim Pract 34:249–269

    Article  PubMed  Google Scholar 

  • Ruba PH, Maheshwari M, Gupta A, Arora A, Rachna (2017) Saffron: from flavour to anti-cancer. Int J Applied Res 3:311–314

    Google Scholar 

  • Sagar SM, Yance D, Wong RK (2006) Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-part 1. Curr Oncol 13:14–26

    PubMed  PubMed Central  CAS  Google Scholar 

  • Samarghandian S, Borji A (2014) Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharm Res 6:99–107

    Google Scholar 

  • Samarghandian S, Afshari JT, Davoodi S (2011) Suppression of pulmonary tumor promotion and induction of apoptosis by Crocus sativus l extraction. Appl Biochem Biotechnol 164:238–247

    Article  PubMed  CAS  Google Scholar 

  • Samarghandian S, Borji A, Farahmand SK, Afshari R, Davoodi S (2013) Crocus sativus L. (Saffron) stigma aqueous extract induces apoptosis in alveolar human lung cancer cells through caspase-dependent pathways activation. Biomed Res Int 2013:417928. https://doi.org/10.1155/2013/417928

  • Sarkar FH, Li Y (2002) Mechanism of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 21:265–280

    Article  PubMed  CAS  Google Scholar 

  • Schamel G (2006) Geography versus brands in a global wine market. Agribusiness 22:363–374

    Article  Google Scholar 

  • Schmidt M, Betti G, Hensel A (2007) Saffron in phytotherapy: pharmacology and clinical uses. Wien Med Wochenschr 157:315–319

    Article  PubMed  Google Scholar 

  • Sebastian KS, Thampan RV (2007) Differential effects of soybean and fenugreek extracts on the growth of MCF-7 cells. Chem Biol Interact 170:135–143

    Article  CAS  PubMed  Google Scholar 

  • Shabbeer S, Sobolewski M, Anchoori RK, Kachhap S, Hidalgo M, Jimeno A, Davidson N, Carducci MA, Khan SR (2009) Fenugreek: a naturally occurring edible spice as an anticancer agent. Cancer Biol Ther 8:272–278

    Article  PubMed  CAS  Google Scholar 

  • Shamaladevi N, Lyn DA, Shaaban KA, Zhang L, Villate S, Rohr J, Lokeshwar BL (2013) Ericifolin: a novel antitumor compound from allspice that silences androgen receptor in prostate cancer. Carcinogenesis 34:1822–1832

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shankar S, Ganapathy S, Hingorani SR, Srivastava RK (2008) EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13:440–452

    Article  PubMed  Google Scholar 

  • Shishodia S, Aggarwal BB (2006) Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the down regulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression. Oncogene 25:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Shrotriya S, Deep G, Gu M, Kaur M, Jain AK, Inturi S, Agarwal R, Agarwal C (2012) Generation of reactive oxygen species by grape seed extract causes irreparable DNA damage leading to G2/M arrest and apoptosis selectively in head and neck squamous cell carcinoma cells. Carcinogenesis 33:848–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shukla S, Mehta A (2015) Anticancer potential of medicinal plants and their phytochemicals: a review. Braz J Bot 38:199–210

    Article  Google Scholar 

  • Siddiqui ZH, Mujib A, Maqsood M (2011) Liquid overlaying improves somatic embryogenesis in Catharanthus roseus. Plant Cell Tissue Org Cult 104:247–256

    Article  Google Scholar 

  • Siddiqui ZH, Mujib A, Mahmooduzzafar AJ, Hakeem KR, Parveen T (2013) In vitro production of secondary metabolites using elicitor in Catharanthus roseus: a case study. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement: new approaches and modern techniques. Springer, The Netherland, pp 401–419

    Chapter  Google Scholar 

  • Singh AV, Franke AA, Blackburn GL, Zhou JR (2006) Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis. Cancer Res 66:1851–1858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh T, Sharma SD, Katiyar SK (2011) Grape proanthocyanidins induce apoptosis by loss of mitochondrial membrane potential of human non-small cell lung cancer cells in vitro and in vivo. PLoS One 6:e27444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slamenova D, Horvathova E, Wsolova L, Sramkova M, Navarova J (2009) Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines. Mutat Res 677:46–52

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan K (2007) Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr 47:735–748

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan S, Koduru S, Kumar R, Venguswamy G, Kyprianou N, Damodaran C (2009) Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. Int J Cancer 125:961–967

    Article  CAS  PubMed  Google Scholar 

  • Starok M, Preira P, Vayssade M, Haupt K, Salomé L, Rossi C (2015) EGFR inhibition by curcumin in cancer cells: a dual mode of action. Biomacromolecules 16:1634–1642

    Article  CAS  PubMed  Google Scholar 

  • Strofer M, Jelkmann W, Depping R (2011) Curcumin decreases survival of Hep3B liver and MCF-7 breast cancer cells. Strahlenther Onkol 187:393–400

    Article  PubMed  Google Scholar 

  • Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780

    Article  CAS  PubMed  Google Scholar 

  • Taylor WG, Elder JL, Chang PR, Richards KW (2000) Microdetermination of diosgenin from fenugreek (Trigonella foenum-graecum) seeds. J Agric Food Chem 48:5206–5210

    Article  CAS  PubMed  Google Scholar 

  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics 2012. CA Cancer J Clin 65:87–108

    Google Scholar 

  • Tuomisto JT, Tuomisto J, Tainio M, Niittynen M¸ Verkasalo P, Vartiainen T, Kiviranta H, Pekkanen J (2004) Risk-benefit analysis of eating farmed salmon. Science 305:476–477

    Article  PubMed  Google Scholar 

  • Tyagi A, Raina K, Shrestha SP, Miller B, Thompson JA, Wempe MF, Agarwal R, Agarwal C (2014) Procyanidin B2 3,3-di-O-gallate, a biologically active constituent of grape seed extract, induces apoptosis in human prostate cancer cells via targeting NF-°B, Stat3, and AP1 transcription factors. Nutr Cancer 66:736–746

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama T, Toda K, Takahashi S (2010) Resveratrol inhibits angiogenic response of cultured endothelial F-2 cells to vascular endothelial growth factor, but not to basic fibroblast growth factor. Biol Pharm Bull 33:1095–1100

    Article  CAS  PubMed  Google Scholar 

  • Valeri A, Fiorenzani P, Rossi R, Aloisi AM, Valoti M, Pessina F (2012) The soy phytoestrogens genistein and daidzein as neuroprotective agents against anoxia-glucopenia and reperfusion damage in rat urinary bladder. Pharmacol Res 66:309–316

    Article  CAS  PubMed  Google Scholar 

  • Vantyghem SA, Wilson SM, Postenka CO, Al-Katib W, Tuck AB, Chambers AF (2005) Dietary genistein reduces metastasis in a postsurgical orthotopic breast cancer model. Cancer Res 65:3396–3403

    Article  CAS  PubMed  Google Scholar 

  • Venier NA (2015) Capsaicin as a novel chemopreventive and therapeutic option for prostate cancer. Ph.D. thesis, Institute of Medical Science, University of Toronto, Canada

    Google Scholar 

  • Volate SR, Muga SJ, Issa AY, Nitcheva D, Smith T, Wargovich MJ (2009) Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Mol Carcinog 48:920–933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wada K, Nakamura K, Tamai Y, Tsuji M, Kawachi T, Hori A, Takeyama N, Tanabashi S, Matsushita S, Tokimitsu N, Nagata C (2013) Soy isoflavone intake and breast cancer risk in Japan: from the Takayama study. Int J Cancer 133:952–960

    Article  CAS  PubMed  Google Scholar 

  • Wang CH, Wang GC, Wang Y, Zhang XQ, Huang XJ, Zhang DM, Chen MF, Ye WC (2012) Cytotoxic dimeric indole alkaloids from Catharanthus roseus. Fitoterapia 83:765–769

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Ge X, Tian X, Zhang Y, Zhang J, Zhang P (2013) Soy isoflavones: the multipurpose phytochemical. Biomed Rep 1:697–701

    Google Scholar 

  • Wang CH, Zhang Y, Jiang MM (2014) Indole alkaloids from the roots of Catharanthus roseus. Chem Nat Comp 49:1177–1178

    Article  CAS  Google Scholar 

  • Wang XD, Li CY, Jiang MM, Li D, Wen P, Song X, Chen JD, Guo LX, Hu XP, Li GQ, Zhang J, Wang CH, He ZD (2016) Induction of apoptosis in human leukemia cells through an intrinsic pathway by cathachunine, a unique alkaloid isolated from Catharanthus roseus. Phytomedicine 23:641–653

    Article  CAS  PubMed  Google Scholar 

  • Wani SA, Kumar PK (2018) Fenugreek: a review on its nutraceutical properties and utilization in various food products. J Saudi Soc Agric Sci 17:97–106

    Article  Google Scholar 

  • Wargovich JM, Morris J, Brown V, Ellis J, Logothetis B, Weber R (2010) Nutraceutical use in late-stage cancer. Cancer Metastasis Rev 29:503–510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wildman REC (2001) Handbook of nutraceuticals and functional foods. CRC Press, Boca Raton, pp 13–30

    Google Scholar 

  • Yaffe PB, Power Coombs MR, Doucette CD, Walsh M, Hoskin DW (2012) Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cell via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol Carcinog 54:1070–1085

    Article  CAS  Google Scholar 

  • Yaffe PB, Coombs M, Doucette CD, Walsh M, Hoskin DW (2015) Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via g1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol Carcinog 54:1070–1085

    Article  CAS  PubMed  Google Scholar 

  • Yance DR, Sagar SM (2006) Targeting angiogenesis with integrative cancer therapies. Integr Cancer Therap 5:9–29

    Article  CAS  Google Scholar 

  • Yang KM, Pyo JO, Kim GY, Yu R, Han IS, Ju SA, Kim WH, Kim BS (2009) Capsaicin induces apoptosis by generating reactive oxygen species and disrupting mitochondrial transmembrane potential in human colon cancer cell lines. Cell Mol Biol Lett 14:497–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CL, Ma YG, Xue YX, Liu YY, Xie H, Qiu GR (2012) Curcumin induces small cell lung cancer NCI-H446 cell apoptosis via the reactive oxygen species-mediated mitochondrial pathway and not the cell death receptor pathway. DNA Cell Biol 31:139–150

    Article  CAS  PubMed  Google Scholar 

  • Yi W, Fischer J, Akoh CC (2005) Study of anticancer activities of muscadine grape phenolics in vitro. J Agric Food Chem 53:8804–8812

    Article  CAS  PubMed  Google Scholar 

  • Yi JL, Shi S, Shen YL, Wang L, Chen HY, Zhu J, Ding Y (2015) Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines. Int J Clin Exp Pathol 8:1116–1127

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK (2008) In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 13:1465–1478

    Article  PubMed  CAS  Google Scholar 

  • Zhang WK, Xu JK, Tian HY, Wang L, Zhang XQ, Xiao XZ, Li P, Ye WC (2013a) Two new vinblastine-type N-oxide alkaloids from Catharanthus roseus. Nat Prod Res 27:1911–1916

    Article  PubMed  CAS  Google Scholar 

  • Zhang WK, Xu JK, Tian HY, Wang L, Zhang XQ, Xiao XZ, Li P, Ye WC (2013b) Further bisindole alkaloids from Catharanthus roseus and their cytotoxicity. Heterocycles 87:627–636

    Article  CAS  Google Scholar 

  • Zhang Z, Wang CZ, Wen XD, Shoyama Y, Yuan CS (2013c) Role of saffron and its constituents on cancer chemoprevention. Pharm Biol 51:920–924

    Article  PubMed  Google Scholar 

  • Zheng J, Zhou Y, Li Y, Xu DP, Li S, Li HB (2016) Spices for prevention and treatment of cancers. Forum Nutr 8:1–35

    CAS  Google Scholar 

  • Zhou K, Raffoul JJ (2012) Potential anticancer properties of grape antioxidants. J Oncol 2012:803294. https://doi.org/10.1155/2012/803294

  • Zick S, Ruffin M, Lee J, Normolle D, Siden R, Alrawi S, Brenner DE (2009) Phase II trial of encapsulated ginger as a treatment for chemotherapy-induced nausea and vomiting. Suppl Care Cancer 17:563–572

    Article  Google Scholar 

Download references

Conflict of Interest

The author declares that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siddiqui, Z.H., Hareramdas, B., Abbas, Z.K., Parween, T., Khan, M.N. (2018). Use of Plant Secondary Metabolites as Nutraceuticals for Treatment and Management of Cancer: Approaches and Challenges. In: Akhtar, M., Swamy, M. (eds) Anticancer plants: Properties and Application. Springer, Singapore. https://doi.org/10.1007/978-981-10-8548-2_17

Download citation

Publish with us

Policies and ethics