Advertisement

Acceleration of Microbial Dehalorespiration with Electrical Stimulation

  • Fan Chen
  • Zhi-Ling Li
  • Ai-Jie Wang
Chapter

Abstract

Halogenated organic compounds (HOCs) represent a type of persistent and ubiquitous contaminants. Microbial reductive dehalogenation in bioelectrochemical systems (BES) with organohalide-respiring bacteria (OHRB) has been recognized as a promising alternative and gained extensive attention in recent years. In this chapter, the enhanced microbial dehalogenation of HOCs by electrochemical stimulation from capacities to extracellular electron transfer (EET)-related molecular and genetic mechanism is summarized. The comprehensive overview of OHRB, dehalorespiring electrode-utilizing microorganisms, biocathode performance, and EET-related molecular mechanisms involved in microbial dehalogenation of HOCs is expected to be helpful for the in situ enhanced bioremediation of HOCs. This chapter also highlights the challenges and outlook of HOCs-dehalogenating biocathodes from mechanism and application perspectives.

Keywords

Halogenated organic compounds (HOCs) Organohalide-respiring bacteria (OHRB) Bioelectrochemical systems (BESs) Biocathode Extracellular electron transfer (EET) 

Notes

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 31400104), China Postdoctoral Science Foundation (2014M550196), Special Financial Grant from China Postdoctoral Science Foundation (2015T80359), Postdoctoral Science Foundation supported by Heilongjiang province of China (LBH-Z14087), and Open Project of State Key Laboratory of Urban Water Resource and Environment of Harbin Institute of Technology (No. 2016DX03).

References

  1. 1.
    Kirk KL (1991) Biochemistry of halogenated organic compounds. Plenum, New YorkGoogle Scholar
  2. 2.
    Erickson MD, Kaley RG (2011) Applications of polychlorinated biphenyls. Environ Sci Pollut Res 18(2):135–151CrossRefGoogle Scholar
  3. 3.
    Cagnetta G, Robertson J, Huang J, Zhang K, Yu G (2016) Mechanochemical destruction of halogenated organic pollutants: a critical review. J Hazard Mater 313:85–102CrossRefGoogle Scholar
  4. 4.
    Chaurasia AK, Adhya TK, Apte SK (2013) Engineering bacteria for bioremediation of persistent organochlorine pesticide lindane (γ-hexachlorocyclohexane). Bioresour Technol 149:439–445CrossRefGoogle Scholar
  5. 5.
    Turusov V, Rakitsky V, Tomatis L (2002) Dichlorodiphenyltrichloroethane (DDT): ubiquity, persistence, and risks. Environ Health Perspect 110(2):125CrossRefGoogle Scholar
  6. 6.
    Li Z, Inoue Y, Suzuki D, Ye L, Katayama A (2013) Long-term anaerobic mineralization of pentachlorophenol in a continuous-flow system using only lactate as an external nutrient. Environ Sci Technol 47(3):1534–1541Google Scholar
  7. 7.
    Lu C, Bjerg PL, Zhang F, Broholm MM (2011) Sorption of chlorinated solvents and degradation products on natural clayey tills. Chemosphere 83(11):1467–1474CrossRefGoogle Scholar
  8. 8.
    van der Zaan B, de Weert J, Rijnaarts H, de Vos WM, Smidt H, Gerritse J (2009) Degradation of 1, 2-dichloroethane by microbial communities from river sediment at various redox conditions. Water Res 43(13):3207–3216CrossRefGoogle Scholar
  9. 9.
    Wang J, Ma Y-J, Chen S-J, Tian M, Luo X-J, Mai B-X (2010) Brominated flame retardants in house dust from e-waste recycling and urban areas in South China: implications on human exposure. Environ Int 36(6):535–541CrossRefGoogle Scholar
  10. 10.
    Feng Y, Colosi LM, Gao S, Huang Q, Mao L (2013) Transformation and removal of tetrabromobisphenol A from water in the presence of natural organic matter via laccase-catalyzed reactions: reaction rates, products, and pathways. Environ Sci Technol 47(2):1001–1008CrossRefGoogle Scholar
  11. 11.
    Ahrens L, Yeung LW, Taniyasu S, Lam PK, Yamashita N (2011) Partitioning of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS) and perfluorooctane sulfonamide (PFOSA) between water and sediment. Chemosphere 85(5):731–737CrossRefGoogle Scholar
  12. 12.
    Cooney MA, Louis GMB, Hediger ML, Vexler A, Kostyniak PJ (2010) Organochlorine pesticides and endometriosis. Reprod Toxicol 30(3):365–369CrossRefGoogle Scholar
  13. 13.
    Feng A-H, Chen S-J, Chen M-Y, He M-J, Luo X-J, Mai B-X (2012) Hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA) in riverine and estuarine sediments of the Pearl River Delta in southern China, with emphasis on spatial variability in diastereoisomer-and enantiomer-specific distribution of HBCD. Mar Pollut Bull 64(5):919–925CrossRefGoogle Scholar
  14. 14.
    Baynes RE, Brooks JD, Mumtaz M, Riviere JE (2002) Effect of chemical interactions in pentachlorophenol mixtures on skin and membrane transport. Toxicol Sci 69(2):295–305CrossRefGoogle Scholar
  15. 15.
    Proudfoot AT (2003) Pentachlorophenol poisoning. Toxicol Rev 22(1):3–11CrossRefGoogle Scholar
  16. 16.
    Agency USEP Toxic and priority pollutants under the clean water act. https://www.epagov/eg/toxic-and-priority-pollutants-under-clean-water-act
  17. 17.
    Perelo LW (2010) In situ and bioremediation of organic pollutants in aquatic sediments. J Hazard Mater 177(1–3):81–89CrossRefGoogle Scholar
  18. 18.
    Liang J, Liu J, Yuan X, Dong H, Zeng G, Wu H, Wang H, Liu J, Hua S, Zhang S (2015) Facile synthesis of alumina-decorated multi-walled carbon nanotubes for simultaneous adsorption of cadmium ion and trichloroethylene. Chem Eng J 273:101–110CrossRefGoogle Scholar
  19. 19.
    Matsukami H, Kose T, Watanabe M, Takigami H (2014) Pilot-scale incineration of wastes with high content of chlorinated and non-halogenated organophosphorus flame retardants used as alternatives for PBDEs. Sci Total Environ 493:672–681CrossRefGoogle Scholar
  20. 20.
    Bokare AD, Choi W (2014) Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J Hazard Mater 275:121–135CrossRefGoogle Scholar
  21. 21.
    Rajajayavel SRC, Ghoshal S (2015) Enhanced reductive dechlorination of trichloroethylene by sulfidated nanoscale zerovalent iron. Water Res 78:144–153CrossRefGoogle Scholar
  22. 22.
    Li D, Mao Z, Zhong Y, Huang W, Wu Y, Pa P (2016) Reductive transformation of tetrabromobisphenol A by sulfidated nano zerovalent iron. Water Res 103:1–9CrossRefGoogle Scholar
  23. 23.
    Adrian L, Loeffler FE (2016) Organohalide-respiring bacteria, vol 85. Springer, BerlinGoogle Scholar
  24. 24.
    Bhatt P, Kumar MS, Mudliar S, Chakrabarti T (2007) Biodegradation of chlorinated compounds—a review. Crit Rev Environ Sci Technol 37(2):165–198CrossRefGoogle Scholar
  25. 25.
    Wang S, Chng KR, Wilm A, Zhao S, Yang K-L, Nagarajan N, He J (2014) Genomic characterization of three unique Dehalococcoides that respire on persistent polychlorinated biphenyls. Proc Natl Acad Sci 111(33):12103–12108CrossRefGoogle Scholar
  26. 26.
    Wang S, Zhang W, Yang K-L, He J (2014) Isolation and characterization of a novel Dehalobacter species strain TCP1 that reductively dechlorinates 2, 4, 6-trichlorophenol. Biodegradation 25(2):313–323CrossRefGoogle Scholar
  27. 27.
    Cheng D, He J (2009) Isolation and characterization of “Dehalococcoides” sp. strain MB, which dechlorinates tetrachloroethene to trans-1, 2-dichloroethene. Appl Environ Microbiol 75(18):5910–5918CrossRefGoogle Scholar
  28. 28.
    Adrian L, Hansen SK, Fung JM, Görisch H, Zinder SH (2007) Growth of Dehalococcoides strains with chlorophenols as electron acceptors. Environ Sci Technol 41(7):2318–2323CrossRefGoogle Scholar
  29. 29.
    He J, Sung Y, Krajmalnik-Brown R, Ritalahti KM, Löffler FE (2005) Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)-and 1, 2-dichloroethene-respiring anaerobe. Environ Microbiol 7(9):1442–1450CrossRefGoogle Scholar
  30. 30.
    He J, Sung Y, Dollhopf ME, Fathepure BZ, Tiedje JM, Löffler FE (2002) Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites. Environ Sci Technol 36(18):3945–3952CrossRefGoogle Scholar
  31. 31.
    Huang L, Regan JM, Quan X (2011) Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresour Technol 102(1):316–323CrossRefGoogle Scholar
  32. 32.
    Mu Y, Rozendal RA, Rabaey K, Keller Jr (2009) Nitrobenzene removal in bioelectrochemical systems. Environ Sci Technol 43(22):8690–8695CrossRefGoogle Scholar
  33. 33.
    Yun H, Liang B, Kong D-Y, Cheng H-Y, Li Z-L, Gu Y-B, Yin H-Q, Wang A-J (2017) Polarity inversion of bioanode for biocathodic reduction of aromatic pollutants. J Hazard Mater 331:280–288CrossRefGoogle Scholar
  34. 34.
    Mohn WW, Tiedje JM (1992) Microbial reductive dehalogenation. Microbiol Rev 56(3):482–507Google Scholar
  35. 35.
    Linkfield TG, Suflita J, Tiedje J (1989) Characterization of the acclimation period before anaerobic dehalogenation of halobenzoates. Appl Environ Microbiol 55(11):2773–2778Google Scholar
  36. 36.
    Kuhn EP, Suflita JM (1989) Dehalogenation of pesticides by anaerobic microorganisms in soils and groundwater—a review. In: Reactions and movement of organic chemicals in soils. Soil Science Society of America, Madison, pp 111–180Google Scholar
  37. 37.
    Bunge M, Adrian L, Kraus A, Opel M, Lorenz WG, Andreesen JR, Görisch H, Lechner U (2003) Reductive dehalogenation of chlorinated dioxins by an anaerobic bacterium. Nature 421(6921):357CrossRefGoogle Scholar
  38. 38.
    Bunge M, Lechner U (2009) Anaerobic reductive dehalogenation of polychlorinated dioxins. Appl Microbiol Biotechnol 84(3):429–444CrossRefGoogle Scholar
  39. 39.
    Haest PJ, Springael D, Smolders E (2010) Dechlorination kinetics of TCE at toxic TCE concentrations: assessment of different models. Water Res 44(1):331–339CrossRefGoogle Scholar
  40. 40.
    Li Z, Yang S, Inoue Y, Yoshida N, Katayama A (2010) Complete anaerobic mineralization of pentachlorophenol (PCP) under continuous flow conditions by sequential combination of PCP-dechlorinating and phenol-degrading consortia. Biotechnol Bioeng 107(5):775–785CrossRefGoogle Scholar
  41. 41.
    Li Z, Suzuki D, Zhang C, Yang S, Nan J, Yoshida N, Wang A, Katayama A (2014) Anaerobic 4-chlorophenol mineralization in an enriched culture under iron-reducing conditions. J Biosci Bioeng 118(5):529–532CrossRefGoogle Scholar
  42. 42.
    Sun B, Griffin BM, Ayala del Rio HL, Hashsham SA, Tiedje JM (2002) Microbial dehalorespiration with 1, 1, 1-trichloroethane. Science 298(5595):1023–1025CrossRefGoogle Scholar
  43. 43.
    Yoshida N, Ye L, Baba D, Katayama A (2009) A novel Dehalobacter species is involved in extensive 4, 5, 6, 7-tetrachlorophthalide dechlorination. Appl Environ Microbiol 75(8):2400–2405CrossRefGoogle Scholar
  44. 44.
    Li Z, Suzuki D, Zhang C, Yoshida N, Yang S, Katayama A (2013) Involvement of Dehalobacter strains in the anaerobic dechlorination of 2, 4, 6-trichlorophenol. J Biosci Bioeng 116(5):602–609CrossRefGoogle Scholar
  45. 45.
    Li Z, Yoshida N, Wang A, Nan J, Liang B, Zhang C, Zhang D, Suzuki D, Zhou X, Xiao Z (2015) Anaerobic mineralization of 2, 4, 6-tribromophenol to CO2 by a synthetic microbial community comprising Clostridium, Dehalobacter, and Desulfatiglans. Bioresour Technol 176:225–232CrossRefGoogle Scholar
  46. 46.
    He J, Ritalahti KM, Aiello MR, Löffler FE (2003) Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Appl Environ Microbiol 69(2):996–1003CrossRefGoogle Scholar
  47. 47.
    Dolfing J (1990) Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1. Arch Microbiol 153(3):264–266CrossRefGoogle Scholar
  48. 48.
    Hölscher T, Görisch H, Adrian L (2003) Reductive dehalogenation of chlorobenzene congeners in cell extracts of Dehalococcoides sp. strain CBDB1. Appl Environ Microbiol 69(5):2999–3001CrossRefGoogle Scholar
  49. 49.
    Holliger C, Hahn D, Harmsen H, Ludwig W, Schumacher W, Tindall B, Vazquez F, Weiss N, Zehnder AJ (1998) Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra-and trichloroethene in an anaerobic respiration. Arch Microbiol 169(4):313–321CrossRefGoogle Scholar
  50. 50.
    van de Pas BA, Smidt H, Hagen WR, van der Oost J, Schraa G, Stams AJ, de Vos WM (1999) Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J Biol Chem 274(29):20287–20292CrossRefGoogle Scholar
  51. 51.
    Neumann A, Scholz-Muramatsu H, Diekert G (1994) Tetrachloroethene metabolism of Dehalospirillum multivorans. Arch Microbiol 162(4):295–301CrossRefGoogle Scholar
  52. 52.
    Chen K, Huang L, Xu C, Liu X, He J, Zinder SH, Li S, Jiang J (2013) Molecular characterization of the enzymes involved in the degradation of a brominated aromatic herbicide. Mol Microbiol 89(6):1121–1139CrossRefGoogle Scholar
  53. 53.
    Payne KA, Quezada CP, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C, Hay S, Rigby SE, Leys D (2015) Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517(7535):513CrossRefGoogle Scholar
  54. 54.
    Bisaillon A, Beaudet R, Lépine F, Villemur R (2011) Quantitative analysis of the relative transcript levels of four chlorophenol reductive dehalogenase genes in Desulfitobacterium hafniense PCP-1 exposed to chlorophenols. Appl Environ Microbiol 77(17):6261–6264CrossRefGoogle Scholar
  55. 55.
    Magnuson JK, Romine MF, Burris DR, Kingsley MT (2000) Trichloroethene reductive dehalogenase from Dehalococcoides ethenogenes: sequence of tceA and substrate range characterization. Appl Environ Microbiol 66(12):5141–5147CrossRefGoogle Scholar
  56. 56.
    Yan J, Ritalahti KM, Wagner DD, Löffler FE (2012) Unexpected specificity of interspecies cobamide transfer from Geobacter spp. to organohalide-respiring Dehalococcoides mccartyi strains. Appl Environ Microbiol 78(18):6630–6636CrossRefGoogle Scholar
  57. 57.
    Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H (2014) Structural basis for organohalide respiration. Science 346:455–458 1258118CrossRefGoogle Scholar
  58. 58.
    Z-L L, Nan J, Yang J-Q, Jin X, Katayama A, Wang A-J (2015) Temporal distributions of functional microbes and putative genes associated with halogenated phenol anaerobic dehalogenation and further mineralization. RSC Adv 5(108):89157–89163CrossRefGoogle Scholar
  59. 59.
    Li Z-L, Nan J, Huang C, Liang B, Liu W-Z, Cheng H-Y, Zhang C, Zhang D, Kong D, Kanamaru K (2016) Spatial abundance and distribution of potential microbes and functional genes associated with anaerobic mineralization of pentachlorophenol in a cylindrical reactor. Sci Rep 6:19015CrossRefGoogle Scholar
  60. 60.
    Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63(2):625–635CrossRefGoogle Scholar
  61. 61.
    Aulenta F, Majone M (2010) Bioelectrochemical systems (BES) for subsurface remediation. Bioelectrochemical Systems, IWA Publishing, LondonGoogle Scholar
  62. 62.
    Fennell DE, Nijenhuis I, Wilson SF, Zinder SH, Häggblom MM (2004) Dehalococcoides ethenogenes strain 195 reductively dechlorinates diverse chlorinated aromatic pollutants. Environ Sci Technol 38(7):2075–2081CrossRefGoogle Scholar
  63. 63.
    He J, Robrock KR, Alvarez-Cohen L (2006) Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environ Sci Technol 40(14):4429–4434CrossRefGoogle Scholar
  64. 64.
    Maymó-Gatell X, Anguish T, Zinder SH (1999) Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65(7):3108–3113Google Scholar
  65. 65.
    Maymó-Gatell X, Nijenhuis I, Zinder SH (2001) Reductive dechlorination of cis-1, 2-dichloroethene and vinyl chloride by “Dehalococcoides ethenogenes”. Environ Sci Technol 35(3):516–521CrossRefGoogle Scholar
  66. 66.
    Yang C, Kublik A, Weidauer C, Seiwert B, Adrian L (2015) Reductive dehalogenation of oligocyclic phenolic bromoaromatics by Dehalococcoides mccartyi strain CBDB1. Environ Sci Technol 49(14):8497–8505CrossRefGoogle Scholar
  67. 67.
    Adrian L, Szewzyk U, Wecke J, Görisch H (2000) Bacterial dehalorespiration with chlorinated benzenes. Nature 408(6812):580CrossRefGoogle Scholar
  68. 68.
    Adrian L, Dudková V, Demnerová K, Bedard DL (2009) “Dehalococcoides” sp. strain CBDB1 extensively dechlorinates the commercial polychlorinated biphenyl mixture Aroclor 1260. Appl Environ Microbiol 75(13):4516–4524CrossRefGoogle Scholar
  69. 69.
    Wagner A, Cooper M, Ferdi S, Seifert J, Adrian L (2012) Growth of Dehalococcoides mccartyi strain CBDB1 by reductive dehalogenation of brominated benzenes to benzene. Environ Sci Technol 46(16):8960–8968CrossRefGoogle Scholar
  70. 70.
    May HD, Miller GS, Kjellerup BV, Sowers KR (2008) Dehalorespiration with polychlorinated biphenyls by an anaerobic ultramicrobacterium. Appl Environ Microbiol 74(7):2089–2094CrossRefGoogle Scholar
  71. 71.
    Wu Q, Milliken CE, Meier GP, Watts JE, Sowers KR, May HD (2002) Dechlorination of chlorobenzenes by a culture containing bacterium DF-1, a PCB dechlorinating microorganism. Environ Sci Technol 36(15):3290–3294CrossRefGoogle Scholar
  72. 72.
    Ding C, Chow WL, He J (2013) Isolation of Acetobacterium sp. strain AG, which reductively debrominates octa-and pentabrominated diphenyl ether technical mixtures. Appl Environ Microbiol 79(4):1110–1117CrossRefGoogle Scholar
  73. 73.
    Zhang C, Li Z, Suzuki D, Ye L, Yoshida N, Katayama A (2013) A humin-dependent Dehalobacter species is involved in reductive debromination of tetrabromobisphenol A. Chemosphere 92(10):1343–1348CrossRefGoogle Scholar
  74. 74.
    Wang J, Fu Z, Liu G, Guo N, Lu H, Zhan Y (2013) Mediators-assisted reductive biotransformation of tetrabromobisphenol-A by Shewanella sp. XB. Bioresour Technol 142:192–197CrossRefGoogle Scholar
  75. 75.
    Gu C, Wang J, Liu S, Liu G, Lu H, Jin R (2016) Biogenic fenton-like reaction involvement in cometabolic degradation of tetrabromobisphenol A by Pseudomonas sp. fz. Environ Sci Technol 50(18):9981–9989CrossRefGoogle Scholar
  76. 76.
    Lee LK, Ding C, Yang K-L, He J (2011) Complete debromination of tetra-and penta-brominated diphenyl ethers by a coculture consisting of Dehalococcoides and Desulfovibrio species. Environ Sci Technol 45(19):8475–8482CrossRefGoogle Scholar
  77. 77.
    Wang S, He J (2013) Dechlorination of commercial PCBs and other multiple halogenated compounds by a sediment-free culture containing Dehalococcoides and Dehalobacter. Environ Sci Technol 47(18):10526–10534Google Scholar
  78. 78.
    Gerritse J, Renard V, Gomes TP, Lawson PA, Collins MD, Gottschal JC (1996) Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165(2):132–140CrossRefGoogle Scholar
  79. 79.
    Dennie D, Gladu I, Lépine F, Villemur R, Bisaillon J-G, Beaudet R (1998) Spectrum of the reductive dehalogenation activity of Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 64(11):4603–4606Google Scholar
  80. 80.
    Boyle AW, Phelps CD, Young L (1999) Isolation from estuarine sediments of a Desulfovibrio strain which can grow on lactate coupled to the reductive dehalogenation of 2, 4, 6-tribromophenol. Appl Environ Microbiol 65(3):1133–1140Google Scholar
  81. 81.
    Sung Y, Fletcher KE, Ritalahti KM, Apkarian RP, Ramoshernández N, Sanford RA, Mesbah NM, Löffler FE (2006) Geobacter lovleyi sp. nov. strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium. Appl Environ Microbiol 72(4):2775–2782CrossRefGoogle Scholar
  82. 82.
    Strycharz SM, Gannon SM, Boles AR, Franks AE, Nevin KP, Lovley DR (2010) Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ Microbiol Rep 2(2):289–294CrossRefGoogle Scholar
  83. 83.
    Gregory KB, Bond DR, Lovley DR (2004) Graphite electrodes as electron donors for anaerobic respiration. Environ Microbiol 6(6):596CrossRefGoogle Scholar
  84. 84.
    Aulenta F, Canosa A, Reale P, Rossetti S, Panero S, Majone M (2009) Microbial reductive dechlorination of trichloroethene to ethene with electrodes serving as electron donors without the external addition of redox mediators. Biotechnol Bioeng 103(1):85CrossRefGoogle Scholar
  85. 85.
    Leitão P, Rossetti S, Danko AS, Nouws H, Aulenta F (2016) Enrichment of Dehalococcoides mccartyi spp. from a municipal activated sludge during AQDS-mediated bioelectrochemical dechlorination of 1, 2-dichloroethane to ethene. Bioresour Technol 214:426–431CrossRefGoogle Scholar
  86. 86.
    Wan H, Yi X, Liu X, Feng C, Dang Z, Wei C (2018) Time-dependent bacterial community and electrochemical characterizations of cathodic biofilms in the surfactant-amended sediment-based bioelectrochemical reactor with enhanced 2, 3, 4, 5-tetrachlorobiphenyl dechlorination. Environ Pollut 236:343–354CrossRefGoogle Scholar
  87. 87.
    Huang L, Chai X, Quan X, Logan BE, Chen G (2012) Reductive dechlorination and mineralization of pentachlorophenol in biocathode microbial fuel cells. Bioresour Technol 111:167–174CrossRefGoogle Scholar
  88. 88.
    Strycharz SM, Woodard TL, Johnson JP, Nevin KP, Sanford RA, Löffler FE, Lovley DR (2008) Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl Environ Microbiol 74(19):5943–5947CrossRefGoogle Scholar
  89. 89.
    Aulenta F, Catervi A, Majone M, Panero S, Priscilla Reale A, Rossetti S (2007) Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ Sci Technol 41(7):2554–2559CrossRefGoogle Scholar
  90. 90.
    Aulenta F, Canosa A, Majone M, Panero S, Reale P, Rossetti S (2008) Trichloroethene dechlorination and H2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system. Environ Sci Technol 42(16):6185–6190CrossRefGoogle Scholar
  91. 91.
    Aulenta F, Reale P, Canosa A, Rossetti S, Panero S, Majone M (2010) Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosens Bioelectron 25(7):1796–1802CrossRefGoogle Scholar
  92. 92.
    Yun H, Kong D, Liang B, Cui M, Li Z, Wang A (2016) Response of anodic bacterial community to the polarity inversion for chloramphenicol reduction. Bioresour Technol 221:666–670CrossRefGoogle Scholar
  93. 93.
    Liang B, Kong D, Ma J, Wen C, Yuan T, Lee D-J, Zhou J, Wang A (2016) Low temperature acclimation with electrical stimulation enhance the biocathode functioning stability for antibiotics detoxification. Water Res 100:157–168CrossRefGoogle Scholar
  94. 94.
    Chen H, Gao X, Wang C, Shao J, Xu X, Zhu L (2017) Efficient 2,4-dichloronitrobenzene removal in the coupled BES-UASB reactor: effect of external voltage mode. Bioresour Technol 241:879CrossRefGoogle Scholar
  95. 95.
    Guo W-Q, Guo S, Yin R-L, Yuan Y, Ren N-Q, Wang A-J, Qu D-X (2015) Reduction of 4-chloronitrobenzene in a bioelectrochemical reactor with biocathode at ambient temperature for a long-term operation. J Taiwan Inst Chem Eng 46:119–124CrossRefGoogle Scholar
  96. 96.
    Aulenta F, Tocca L, Verdini R, Reale P, Majone M (2011) Dechlorination of trichloroethene in a continuous-flow bioelectrochemical reactor: effect of cathode potential on rate, selectivity, and electron transfer mechanisms. Environ Sci Technol 45(19):8444–8451CrossRefGoogle Scholar
  97. 97.
    Liu D, Lei L, Yang B, Yu Q, Li Z (2013) Direct electron transfer from electrode to electrochemically active bacteria in a bioelectrochemical dechlorination system. Bioresour Technol 148:9–14CrossRefGoogle Scholar
  98. 98.
    Zhang D, Zhang C, Li Z, Suzuki D, Komatsu DD, Tsunogai U, Katayama A (2014) Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization. Bioresour Technol 164:232–240CrossRefGoogle Scholar
  99. 99.
    Lovley DR, Nevin KP (2011) A shift in the current: new applications and concepts for microbe-electrode electron exchange. Curr Opin Biotechnol 22(3):441–448CrossRefGoogle Scholar
  100. 100.
    Wagner DD, Hug LA, Hatt JK, Spitzmiller MR, Padilla-Crespo E, Ritalahti KM, Edwards EA, Konstantinidis KT, Löffler FE (2012) Genomic determinants of organohalide-respiration in Geobacter lovleyi, an unusual member of the Geobacteraceae. BMC Genomics 13(1):200CrossRefGoogle Scholar
  101. 101.
    Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic Myxobacterium. Appl Environ Microbiol 68(2):893CrossRefGoogle Scholar
  102. 102.
    Thomas SH, Wagner RD, Arakaki AK, Skolnick J, Kirby JR, Shimkets LJ, Sanford RA, Löffler FE (2008) The mosaic genome of Anaeromyxobacter dehalogenans strain 2CP-C suggests an aerobic common ancestor to the delta-proteobacteria. PLoS One 3(5):e2103CrossRefGoogle Scholar
  103. 103.
    Logan BE, Call D, Cheng S, Hamelers HV, Sleutels TH, Jeremiasse AW, Rozendal RA (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640CrossRefGoogle Scholar
  104. 104.
    Aulenta F, Reale P, Catervi A, Panero S, Majone M (2008) Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochim Acta 53(16):5300–5305CrossRefGoogle Scholar
  105. 105.
    Skadberg B, Geoly-Horn SL, Sangamalli V, Flora JR (1999) Influence of pH, current and copper on the biological dechlorination of2, 6-dichlorophenol in an electrochemical cell. Water Res 33(9):1997–2010CrossRefGoogle Scholar
  106. 106.
    Liang B, Cheng HY, Kong DY, Gao SH, Sun F, Cui D, Kong FY, Zhou AJ, Liu WZ, Ren NQ, Wu WM, Wang AJ, Lee DJ (2013) Accelerated reduction of chlorinated nitroaromatic antibiotic chloramphenicol by biocathode. Environ Sci Technol 47(10):5353–5361.  https://doi.org/10.1021/es400933hCrossRefGoogle Scholar
  107. 107.
    Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: which extracellular electron transfer mechanisms are involved? Bioresour Technol 102(1):324–333CrossRefGoogle Scholar
  108. 108.
    Strycharz SM, Glaven RH, Coppi MV, Gannon SM, Perpetua LA, Liu A, Nevin KP, Lovley DR (2011) Gene expression and deletion analysis of mechanisms for electron transfer from electrodes to Geobacter sulfurreducens. Bioelectrochemistry 80(2):142–150CrossRefGoogle Scholar
  109. 109.
    Okamoto A, Hashimoto K, Nealson KH (2014) Flavin redox bifurcation as a mechanism for controlling the direction of electron flow during extracellular electron transfer. Angew Chem Int Ed 53(41):10988–10991CrossRefGoogle Scholar
  110. 110.
    Thrash JC, Coates JD (2008) Direct and indirect electrical stimulation of microbial metabolism. Environ Sci Technol 42(11):3921–3931CrossRefGoogle Scholar
  111. 111.
    Patil SA, Hägerhäll C, Gorton L (2012) Electron transfer mechanisms between microorganisms and electrodes in bioelectrochemical systems. In: Advances in chemical bioanalysis. Springer, pp 71–129Google Scholar
  112. 112.
    Thrash JC, Van Trump JI, Weber KA, Miller E, Achenbach LA, Coates JD (2007) Electrochemical stimulation of microbial perchlorate reduction. Environ Sci Technol 41(5):1740–1746CrossRefGoogle Scholar
  113. 113.
    Moscoviz R, Toledo-Alarcón J, Trably E, Bernet N (2016) Electro-fermentation: how to drive fermentation using electrochemical systems. Trends Biotechnol 34(11):856–865CrossRefGoogle Scholar
  114. 114.
    Jones RW, Garland PB (1977) Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. Biochem J 164(1):199–211CrossRefGoogle Scholar
  115. 115.
    Huang L, Angelidaki I (2008) Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells. Biotechnol Bioeng 100(3):413–422CrossRefGoogle Scholar
  116. 116.
    Venkataraman A, Rosenbaum M, Arends JB, Halitschke R, Angenent LT (2010) Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems. Electrochem Commun 12(3):459–462CrossRefGoogle Scholar
  117. 117.
    Marsili E, Baron DB, Shikhare ID, Coursolle D, Gralnick JA, Bond DR (2008) Shewanella secretes flavins that mediate extracellular electron transfer. Proc Natl Acad Sci 105(10):3968–3973CrossRefGoogle Scholar
  118. 118.
    Freguia S, Tsujimura S, Kano K (2010) Electron transfer pathways in microbial oxygen biocathodes. Electrochim Acta 55(3):813–818CrossRefGoogle Scholar
  119. 119.
    Luijten ML, Roelofsen W, Langenhoff AA, Schraa G, Stams AJ (2004) Hydrogen threshold concentrations in pure cultures of halorespiring bacteria and at a site polluted with chlorinated ethenes. Environ Microbiol 6(6):646–650CrossRefGoogle Scholar
  120. 120.
    Liang B, Cheng H, Van Nostrand JD, Ma J, Yu H, Kong D, Liu W, Ren N, Wu L, Wang A, Lee DJ, Zhou J (2014) Microbial community structure and function of nitrobenzene reduction biocathode in response to carbon source switchover. Water Res 54:137–148.  https://doi.org/10.1016/j.watres.2014.01.052CrossRefGoogle Scholar
  121. 121.
    Oh S-E, Logan BE (2006) Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells. Appl Microbiol Biotechnol 70(2):162–169CrossRefGoogle Scholar
  122. 122.
    Wei J, Liang P, Huang X (2011) Recent progress in electrodes for microbial fuel cells. Bioresour Technol 102(20):9335–9344CrossRefGoogle Scholar
  123. 123.
    Ter Heijne A, Strik DP, Hamelers HV, Buisman CJ (2010) Cathode potential and mass transfer determine performance of oxygen reducing biocathodes in microbial fuel cells. Environ Sci Technol 44(18):7151–7156CrossRefGoogle Scholar
  124. 124.
    Di Battista A, Verdini R, Rossetti S, Pietrangeli B, Majone M, Aulenta F (2012) CARD-FISH analysis of a TCE-dechlorinating biocathode operated at different set potentials. New Biotechnol 30(1):33–38CrossRefGoogle Scholar
  125. 125.
    Leitão P, Rossetti S, Nouws HP, Danko AS, Majone M, Aulenta F (2015) Bioelectrochemically-assisted reductive dechlorination of 1, 2-dichloroethane by a Dehalococcoides-enriched microbial culture. Bioresour Technol 195:78–82CrossRefGoogle Scholar
  126. 126.
    Lee PK, Cheng D, West KA, Alvarez-Cohen L, He J (2013) Isolation of two new Dehalococcoides mccartyi strains with dissimilar dechlorination functions and their characterization by comparative genomics via microarray analysis. Environ Microbiol 15(8):2293–2305CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Fan Chen
    • 1
  • Zhi-Ling Li
    • 1
  • Ai-Jie Wang
    • 2
    • 3
  1. 1.State Key Laboratory of Urban Water Resource and EnvironmentHarbin Institute of TechnologyHarbinChina
  2. 2.Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  3. 3.State Key Laboratory of Urban Water Resource and Environment, School of EnvironmentHarbin Institute of TechnologyHarbinChina

Personalised recommendations