Skip to main content

Effectiveness of Region Growing Based Segmentation Technique for Various Medical Images - A Study

  • Conference paper
  • First Online:
Data Science and Analytics (REDSET 2017)

Abstract

Due to rapid and continuous progress along with higher fidelity rate, medical imaging is becoming one of the most crucial fields in scientific imaging. Both microscopic and macroscopic modalities are probed and their resulting images are analyzed and interpreted in medical imaging for the early detection, diagnosis, and treatment of various ailments like a tumor, cancer, gallstones, etc. Although the field of medical image processing is growing significantly and persistently, there still exist a number of challenges in this field. Among these challenges, the frequently occurring and critically significant one is image segmentation. The theme work presented in this paper includes challenges involved and comparative analysis of segmentation using region growing techniques frequently utilized in various biomedical images like retinal vessel image, mammograms, magnetic resonance images, PET-CT image, coronary artery image, microscopy image, ultrasound image, etc. It discusses the effectiveness of the region growing technique applied on various medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang, X., Mojon, D.: Adaptive local thresholding by verification based multi-threshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)

    Article  Google Scholar 

  2. Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combing the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)

    Article  Google Scholar 

  3. Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Image Anal. 11(1), 47–61 (2007)

    Article  Google Scholar 

  4. You, X., Peng, Q., Yuan, Y., Cheung, Y., Lei, J.: A segmentation of retinal blood vessels using the radial projection and semi-supervised approach. Pattern Recogn. 44(10), 2314–2324 (2011)

    Article  Google Scholar 

  5. Marin, D., Aquino, A., Gegundez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)

    Article  Google Scholar 

  6. Chaudhuri, S., Chatterjee, S., Katz, N., Nelson, M., Goldbaum, M.: Detection of blood vessels in retinal images using two-dimensional matched filters. IEEE Trans. Med. Imaging 8(3), 263–269 (1989)

    Article  Google Scholar 

  7. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by the piecewise threshold of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  8. Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel extraction by matched filter with a first-order derivative of Gaussian. Comput. Biol. Med. 40(4), 438–445 (2010)

    Article  Google Scholar 

  9. Stankiewicz, A., Marciniak, T., Dabrowski, A., Stopa, M., Rakowicz, P., Marciniak, E.: Improving segmentation of 3D retina layers based on graph theory approach for low-quality OCT images. Metrol. Meas. Syst. 23(2), 269–280 (2016)

    Article  Google Scholar 

  10. Zhao, Y.Q., Wang, X.H., Wang, X.F., Shih, F.Y.: Retinal vessels segmentation based on level set and region growing. Pattern Recogn. 47, 2437–2446 (2014)

    Article  Google Scholar 

  11. Cao, Y., Hao, X., Zhu, X., Xia, S.: An adaptive region growing algorithm for breast masses in mammograms. Front. Electr. Electron. Eng. China 5(2), 128–136 (2014)

    Article  Google Scholar 

  12. Freer, T.W., Ullissey, M.J.: Screening mammography with the computer-aided detection-perspective study of 12,860 patients in a community breast center. Radiology 220(3), 781–786 (2001)

    Article  Google Scholar 

  13. Tahmasbi, A., Saki, F., Shokouhi, S.B.: Classification of benign and malignant masses based on Zernike moments. Comput. Biol. Med. 41(8), 726–735 (2011)

    Article  Google Scholar 

  14. Wei, C.H., Chen, S.Y., Liu, X.: Mammogram retrieval on similar mass lesions. Comput. Methods Programs Biomed. 106(3), 234–248 (2012)

    Article  Google Scholar 

  15. Rouhi, R., Jafari, M., Kasaei, S., Keshavarzian, P.: Benign and malignant breast tumors classification based on region growing and CNN segmentation. Expert Syst. Appl. 42(3), 990–1002 (2015)

    Article  Google Scholar 

  16. McNitt-Gray, M.: Lung nodules and beyond-approaches, challenges and opportunities in thoracic CAD. In: Proceedings of 18th International Congress and Exhibition on Computer Assisted Radiology and Surgery, pp. 896–901 (2004)

    Google Scholar 

  17. Denison, D.M., Morgan, M.D., Milla, A.B.: Estimation of regional gas and tissue volumes of the lung in supine man using computed tomography. Thorax 41(8), 620–628 (1986)

    Article  Google Scholar 

  18. Kalender, W.A., Fichte, H., Bautz, W., Skalej, M.: Semiautomatic evaluation procedures for quantitative CT of the lung. J. Comput. Assist. Tomogr. 15(2), 248–255 (1991)

    Article  Google Scholar 

  19. Sun, X., Zhang, H., Duan, H.: 3D computerized segmentation of lung volume with computed tomography. Acad. Radiol. 13(6), 670–677 (2006)

    Article  Google Scholar 

  20. Pu, J., Roos, J., Chin, A.Y., Napel, S., Rubin, G.D., Paik, D.S.: Adaptive border marching algorithm: automatic lung segmentation on chest CT images. Comput. Med. Imaging Graph. 32(6), 452–462 (2008)

    Article  Google Scholar 

  21. Van Rikxoort, E.M., de Hoop, B., Viergever, M.A., Prokop, M., Ginneken, B.V.: Automatic lung segmentation from thoracic computed tomography scans using a hybrid approach with error detection. Med. Phys. 36(7), 2934–2947 (2009)

    Article  Google Scholar 

  22. Korfiatis, P., Skiadopoulos, S., Sakellaropoulos, P., Kalogeropoulou, C., Costaridou, L.: Combining 2D wavelet edge highlighting and 3D thresholding for lung segmentation in thin-slice CT. Br. J. Radiol. 80(960), 996–1004 (2014)

    Article  Google Scholar 

  23. Zhao, J., Ji, G., Han, X., Qiang, Y., Liao, X.: An automated pulmonary parenchyma segmentation method based on an improved region growing algorithm in PET-CT imaging. Front. Comput. Sci. 10(1), 189–200 (2016)

    Article  Google Scholar 

  24. Li, Z., Zhang, Y., Liu, G., Shao, H., Li, W., Tang, X.: A robust coronary artery identification and centerline extraction method in angiographies. Biomed. Sig. Process. Control 16, 1–8 (2015)

    Article  Google Scholar 

  25. Sato, Y., Araki, T., Hanayama, M., Naito, H., Tamura, S.: A viewpoint determination system for stenosis diagnosis and quantification in coronary angiographic image acquisition. IEEE Trans. Med. Imaging 17(1), 37–121 (1998)

    Article  Google Scholar 

  26. Liao, R., Luc, D., Sun, Y., Kirchberg, K.: 3-D reconstruction of the coronary artery tree from multiple views of a rotational X-ray angiography. Int. J. Cardiovasc. Imaging 26, 49–733 (2010)

    Article  Google Scholar 

  27. Zheng, S., Zhou, Y.: Assessing cardiac dynamics based on X-ray coronary angiogram. J. Multimedia 8(1), 48–55 (2013)

    MathSciNet  Google Scholar 

  28. Suri, J., Liu, K., Reden, L., Laxminarayan, S.: A review on MR vascular image processing: skeleton versus non-skeleton approaches: part II. IEEE Trans. Inf. Technol. Biomed. 6(4), 50–338 (2002)

    Google Scholar 

  29. O’Brien, J.F., Ezquerra, N.F.: Automated segmentation of coronary vessels in angiographic image sequences utilizing temporal, spatial, and structural constraints. In: Visualization in Biomedical Computing 1994, pp. 25–37. International Society for Optics and Photonics (1994)

    Google Scholar 

  30. Li, Y., Zhou, S., Wu, J., Ma, X., Peng, K.: A novel method of vessel segmentation for X-ray coronary angiography images. In: 2012 Fourth International Conference on Computational and Information Sciences (ICCIS), pp. 468–471. IEEE (2012)

    Google Scholar 

  31. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A review of 3D vessel lumen segmentation techniques-models, features and extraction schemes. Med. Image Anal. 13(6), 819–845 (2009)

    Article  Google Scholar 

  32. Lara, D.S., Faria, A.W., Araújo, A., Menotti, D.: A semi-automatic method for segmentation of the coronary artery tree from angiography. In: XXII Brazilian Symposium on Computer Graphics and Image Processing, pp. 194–201. IEEE (2009)

    Google Scholar 

  33. Nimura, Y., Kitasaka, T., Mori, K.: Blood vessel segmentation using line-direction vector based on the Hessian analysis. In: SPIE Medical Imaging, p. 76233Q. International Society for Optics and Photonics (2010)

    Google Scholar 

  34. Kerkeni, A., Benabdallah, A., Manzanera, A., Bedoui, M.H.: A coronary artery segmentation method based on multiscale analysis and region growing. Computer. Med. Imaging Graph. 48, 49–61 (2016)

    Article  Google Scholar 

  35. Westwood, M., Anderson, L.J., Firmin, D.N., Gatehouse, P.D., Charrier, C.C., Wonke, B., Pennell, D.J.: A single breath-hold multiecho T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J. Magn. Reson. Imaging 18, 33–39 (2003)

    Article  Google Scholar 

  36. Boon-Chieng, E., Duangchaemkarn, K.: Myocardial iron measurement in thalassemia using cardiac magnetic resonance image processing software. In: Biomedical Engineering International Conference (BMEiCON), pp. 1–4 (2012)

    Google Scholar 

  37. Zheng, Q., Feng, Y., Wei, X., Feng, M., Chen, W., Lu, Z., Xu, Y., Chen, H., He, T.: Automated interventricular septum segmentation for black-blood myocardial T2* measurement in thalassemia. J. Magn. Reson. Imaging 41, 1242–1250 (2015)

    Article  Google Scholar 

  38. Wantanajittikul, K., Theera-Umpon, N., Saekho, S., Auephanwiriyakul, S., Phrommintikul, A., Leemasawat, K.: Automatic cardiac T2* relaxation time estimation from magnetic resonance images using region growing method with automatically initialized seed points. Comput. Methods Programs Biomed. 130, 76–86 (2016)

    Article  Google Scholar 

  39. Tatanun, C., Ritthipravat, P., Bhongmakapat, T., Tuntiyatorn, L.: Automatic segmentation of nasopharyngeal carcinoma from CT images: region growing based technique. In: 2010 2nd International Conference on Signal Processing Systems (ICSPS), pp. V2-537–V2-541 (2010)

    Google Scholar 

  40. Huang, W., Chan, K.L., Chong, V.: Nasopharyngeal carcinoma lesion extraction using clustering via semi-supervised metric learning with side-information. In: 2008 5th International Conference on Visual Information Engineering (VIE 2008) (2008)

    Google Scholar 

  41. Chanapai, W., Bhongmakapat, T., Tuntiyatorn, L., Ritthipravat, P.: Nasopharyngeal carcinoma segmentation using a region growing technique. Int. J. Comput. Assist. Radiol. Surg. 7, 413–422 (2012)

    Article  Google Scholar 

  42. Zhang, J., Ma, K.-K., Er, M.-H., Chong, V.: Tumor segmentation from magnetic resonance imaging by learning via one-class support vector machine. In: International Workshop on Advanced Image Technology (IWAIT 2004), pp. 207–211 (2004)

    Google Scholar 

  43. Zhou, J., Chan, K.L., Xu, P., Chong, V.F.: Nasopharyngeal carcinoma lesion segmentation from MR images by support vector machine. In: 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro 2006, pp. 1364–1367 (2006)

    Google Scholar 

  44. Zhou, J., Chong, V., Lim, T.-K., Houng, J.: MRI tumor segmentation for nasopharyngeal carcinoma using knowledge-based fuzzy clustering. Int. J. Inf. Technol. 8 (2002)

    Google Scholar 

  45. Mohammed, M.A., Ghani, M.K.A., Hamed, R.I., Abdullah, M.K., Ibrahim, D.A.: Automatic segmentation and automatic seed point selection of nasopharyngeal carcinoma from microscopy images using region growing based approach. J. Comput. Sci. 20(5), 61–69 (2017)

    Article  Google Scholar 

  46. Ciecholewski, M., Chocholowicz, J.: Gallbladder shape extraction from ultrasound images using active contour models. Comput. Biol. Med. 43(12), 2238–2255 (2013)

    Article  Google Scholar 

  47. Xie, W., Ma, Y., Shi, B., Wang, Z.: Gallstone segmentation and extraction from ultrasound images using the level set method. In: IEEE Bio-signals and Bio-robotics Conference (2013)

    Google Scholar 

  48. Gupta, D., Anand, R.S., Tyagi, B.: A hybrid segmentation method based on Gaussian kernel fuzzy clustering and region-based active contour model for ultrasound medical images. Biomed. Sig. Process. Control 16, 98–112 (2015)

    Article  Google Scholar 

  49. Lian, J., Ma, Y., Ma, Y., Shi, B., Liu, J., Yang, Z., Guo, Y.: Automatic gallbladder and gallstone regions segmentation in the ultrasound image. Int. J. Comput. Assist. Radiol. Surg. 12(4), 553–568 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manju Dabass or Sharda Vashisth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dabass, M., Vashisth, S., Vig, R. (2018). Effectiveness of Region Growing Based Segmentation Technique for Various Medical Images - A Study. In: Panda, B., Sharma, S., Roy, N. (eds) Data Science and Analytics. REDSET 2017. Communications in Computer and Information Science, vol 799. Springer, Singapore. https://doi.org/10.1007/978-981-10-8527-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8527-7_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8526-0

  • Online ISBN: 978-981-10-8527-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics