Skip to main content

Go-Explore-NoGo (GEN) Paradigm in Decision Making—A Multimodel Approach

  • Chapter
  • First Online:
Computational Neuroscience Models of the Basal Ganglia

Abstract

In this chapter, we built a hybrid model using the combination of biophysical and Izhikevich neurons and validated our earlier hypothesis about Go-Explore-NoGo (GEN) mechanism in BG. The hybrid model consists of Hodgkin–Huxley type model for STN, GPe, and GPi and spiking model for striatum. To capture the effect of dopamine (DA) on the BG nuclei dynamics, the synaptic weights between STN–GPe and the T-type cs in STN known to induce bursting behavior were modulated by DA. We compared the results from hybrid model with spiking Izhikevich model and rate-coded model for binary action selection task. The results from the hybrid model further reinforced the theory of GEN showing exploration levels are dependent on the level of DA. The results from n-arm bandit task also show that by decreasing the striatum (D1) to GPi weight in the spiking model, we can increase the exploration level in the system reflected as the decreased average reward obtained by the model. The n-arm bandit results were compared with the results from rate-coded and lumped softmax model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72(2), 507–520.

    Article  Google Scholar 

  • Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: oscillations in the subthalamic nucleus–external globus pallidus network. Trends in Neurosciences, 25(10), 525–531.

    Article  Google Scholar 

  • Borisyuk, G. N., Borisyuk, R. M., Khibnik, A. I., & Roose, D. (1995). Dynamics and bifurcations of two coupled neural oscillators with different connection types. Bulletin of Mathematical Biology, 57(6), 809–840.

    Article  MATH  Google Scholar 

  • Chakravarthy, V., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological cybernetics, 103(3), 237–253.

    Article  MathSciNet  MATH  Google Scholar 

  • Dovzhenok, A., & Rubchinsky, L. L. (2012). On the Origin of Tremor in Parkinson’s Disease. PLoS ONE, 7(7), e41598.

    Article  Google Scholar 

  • Gupta, A., Balasubramani, P. P., & Chakravarthy, V. S. (2013). Computational model of precision grip in Parkinson’s disease: a utility based approach. Frontiers in computational neuroscience, 7.

    Google Scholar 

  • Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.

    Article  Google Scholar 

  • Heida, T., Marani, E., & Usunoff, K. G. (2008). The Basal Ganglia: Springer.

    Google Scholar 

  • Humphries, M. D., Stewart, R. D., & Gurney, K. N. (2006). A physiologically plausible model of action selection and oscillatory activity in the basal ganglia. The Journal of Neuroscience, 26(50), 12921–12942.

    Article  Google Scholar 

  • Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Transactions on Neural Networks, 14(6), 1569–1572.

    Article  MathSciNet  Google Scholar 

  • Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: a model. Neural Networks, 32, 65–73. https://doi.org/10.1016/j.neunet.2012.02.031.

    Article  Google Scholar 

  • Krishnan, R., Ratnadurai, S., Subramanian, D., Chakravarthy, V. S., & Rengaswamy, M. (2011). Modeling the role of basal ganglia in saccade generation: Is the indirect pathway the explorer? Neural Networks, 24(8), 801–813.

    Article  Google Scholar 

  • Loucif, A. J., Woodhall, G. L., Sehirli, U. S., & Stanford, I. M. (2008). Depolarisation and suppression of burst firing activity in the mouse subthalamic nucleus by dopamine D1/D5 receptor activation of a cyclic-nucleotide gated non-specific cation conductance. Neuropharmacology, 55(1), 94–105.

    Article  Google Scholar 

  • Magdoom, K., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S.-I., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding parkinsonian reaching movements. Neural Computation, 23(2), 477–516.

    Article  MATH  Google Scholar 

  • Mandali, A., & Chakravarthy, V. S. (2015). A computational basal ganglia model to assess the role of STN-DBS on Impulsivity in Parkinson’s disease. Paper presented at the Neural Networks (IJCNN), 2015 International Joint Conference on.

    Google Scholar 

  • Mandali, A., Rengaswamy, M., Chakravarthy, V. S., & Moustafa, A. A. (2015). A spiking Basal Ganglia model of synchrony, exploration and decision making. Frontiers in Neuroscience, 9, 191.

    Article  Google Scholar 

  • Muralidharan, V., Balasubramani, P. P., Chakravarthy, V. S., Lewis, S. J., & Moustafa, A. A. (2013). A computational model of altered gait patterns in parkinson’s disease patients negotiating narrow doorways. Frontiers in computational neuroscience, 7.

    Google Scholar 

  • Park, C., Worth, R. M., & Rubchinsky, L. L. (2010). Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson’s disease. Journal of Neurophysiology, 103(5), 2707–2716.

    Article  Google Scholar 

  • Park, C., Worth, R. M., & Rubchinsky, L. L. (2011). Neural dynamics in parkinsonian brain: the boundary between synchronized and nonsynchronized dynamics. Physical Review E, 83(4), 042901.

    Article  Google Scholar 

  • Ramanathan, S., Tkatch, T., Atherton, J. F., Wilson, C. J., & Bevan, M. D. (2008). D2-like dopamine receptors modulate SKCa channel function in subthalamic nucleus neurons through inhibition of Cav2. 2 channels. Journal of Neurophysiology, 99(2), 442–459.

    Article  Google Scholar 

  • Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.

    Article  Google Scholar 

  • Sinha, S. (1999). Noise-free stochastic resonance in simple chaotic systems. Physica A: Statistical Mechanics and its Applications, 270(1), 204–214.

    Article  Google Scholar 

  • Sukumar, D., Rengaswamy, M., & Chakravarthy, V. S. (2012). Modeling the contributions of Basal ganglia and Hippocampus to spatial navigation using reinforcement learning. PLoS ONE, 7(10), e47467.

    Article  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1): Cambridge Univ Press.

    Google Scholar 

  • Tachibana, Y., Iwamuro, H., Kita, H., Takada, M., & Nambu, A. (2011). Subthalamo-pallidal interactions underlying parkinsonian neuronal oscillations in the primate basal ganglia. European Journal of Neuroscience, 34(9), 1470–1484.

    Article  Google Scholar 

  • Tai, C.-H., Yang, Y.-C., Pan, M.-K., Huang, C.-S., & Kuo, C.-C. (2011). Modulation of subthalamic T-type Ca 2+ channels remedies locomotor deficits in a rat model of Parkinson disease. The Journal of Clinical Investigation, 121(8), 3289–3305.

    Article  Google Scholar 

  • Terman, D., Rubin, J., Yew, A., & Wilson, C. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of neuroscience, 22(7), 2963–2976.

    Google Scholar 

  • Weinberger, M., & Dostrovsky, J. O. (2011). A basis for the pathological oscillations in basal ganglia: the crucial role of dopamine. NeuroReport, 22(4), 151.

    Article  Google Scholar 

  • Yang, Y.-C., Tai, C.-H., Pan, M.-K., & Kuo, C.-C. (2014). The T-type calcium channel as a new therapeutic target for Parkinson’s disease. Pflügers Archiv-European Journal of Physiology, 466(4), 747–755.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Srinivasa Chakravarthy .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandali, A., Akila Parvathy Dharshini, S., Srinivasa Chakravarthy, V. (2018). Go-Explore-NoGo (GEN) Paradigm in Decision Making—A Multimodel Approach. In: Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8494-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8494-2_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8493-5

  • Online ISBN: 978-981-10-8494-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics