Advertisement

Modeling Precision Grip Force in Controls and Parkinson’s Disease Patients

  • Ankur Gupta
  • V. Srinivasa Chakravarthy
Chapter
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

Precision grip (PG) is the ability to hold an object between forefinger and thumb. Lifting objects in PG require delicate finger grip force (GF) control. Healthy controls modulate GF depending on size, weight, surface curvature, and friction. The difference between the actual GF generated and the minimum GF required to prevent the object from slipping is known as safety margin (SM). Published results suggest that OFF-medicated Parkinson’s disease (PD) patients generated average SM identical to that of controls with increased SM variance. PD patients on medication demonstrated higher average SM with SM variance identical to that of controls. Previously known computational models provide an insight on how the GF is generated and controlled but are unsuitable for modeling the GF in PD patients. In this chapter, we present a Go/Explore/NoGo (GEN) algorithm in a utility-based decision-making framework to explain the SM generated by healthy controls and PD patients both during ON and OFF medication. The study suggests that PD GF is a result of dopamine-level-dependent suboptimal decision-making-based force selection and the suitability of the GEN algorithm to model decision-making tasks.

References

  1. Almecija, S., Moya-Sola, S., & Alba, D. M. (2010). Early origin for human-like precision grasping: A comparative study of pollical distal phalanges in fossil hominins. PLoS ONE, 5(7), e11727.CrossRefGoogle Scholar
  2. Boecker, H., Lee, A., Mühlau, M., Ceballos-Baumann, A., Ritzl, A., Spilker, M., et al. (2005). Force level independent representations of predictive grip force–load force coupling: A PET activation study. Neuroimage, 25(1), 243–252.CrossRefGoogle Scholar
  3. Calvin, W. H. (1982). Did throwing stones shape hominid brain evolution? Ethology and Sociobiology, 3(3), 115–124.CrossRefGoogle Scholar
  4. Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.MathSciNetCrossRefzbMATHGoogle Scholar
  5. d’Acremont, M., Lu, Z. L., Li, X., Van der Linden, M., & Bechara, A. (2009). Neural correlates of risk prediction error during reinforcement learning in humans. Neuroimage, 47(4), 1929–1939.CrossRefGoogle Scholar
  6. Davare, M., Andres, M., Cosnard, G., Thonnard, J.-L., & Olivier, E. (2006). Dissociating the role of ventral and dorsal premotor cortex in precision grasping. The Journal of neuroscience, 26(8), 2260–2268.CrossRefGoogle Scholar
  7. Davidson, P. R., & Wolpert, D. M. (2003). Motor learning and prediction in a variable environment. Current Opinion in Neurobiology, 13(2), 232–237.CrossRefGoogle Scholar
  8. de Gruijl, J. R., van der Smagt, P., & De Zeeuw, C. I. (2009). Anticipatory grip force control using a cerebellar model. Neuroscience, 162(3), 777–786.CrossRefGoogle Scholar
  9. Ehrsson, H. H., Fagergren, A., Johansson, R. S., & Forssberg, H. (2003). Evidence for the involvement of the posterior parietal cortex in coordination of fingertip forces for grasp stability in manipulation. Journal of Neurophysiology, 90(5), 2978–2986.CrossRefGoogle Scholar
  10. Fagergren, A., Ekeberg, O., & Forssberg, H. (2000). Precision grip force dynamics: A system identification approach. Biomedical Engineering, IEEE Transactions on, 47(10), 1366–1375.CrossRefGoogle Scholar
  11. Fagergren, A., Ekeberg, Ö., & Forssberg, H. (2003). Control strategies correcting inaccurately programmed fingertip forces: Model predictions derived from human behavior. Journal of Neurophysiology, 89(6), 2904–2916.CrossRefGoogle Scholar
  12. Fellows, S. J., & Noth, J. (2004). Grip force abnormalities in de novo Parkinson’s disease. Movement Disorders, 19(5), 560–565.CrossRefGoogle Scholar
  13. Fellows, S. J., Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain, 121(9), 1771–1784.CrossRefGoogle Scholar
  14. Flanagan, J. R., Bowman, M. C., & Johansson, R. S. (2006). Control strategies in object manipulation tasks. Current Opinion in Neurobiology, 16(6), 650–659.CrossRefGoogle Scholar
  15. Flanagan, J. R., Vetter, P., Johansson, R. S., & Wolpert, D. M. (2003). Prediction precedes control in motor learning. Current Biology, 13(2), 146–150.CrossRefGoogle Scholar
  16. Flanagan, J. R., & Wing, A. M. (1997). The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand-held loads. The Journal of Neuroscience, 17(4), 1519–1528.Google Scholar
  17. Forssberg, H., Eliasson, A. C., Kinoshita, H., Johansson, R. S., & Westling, G. (1991). Development of human precision grip. I: Basic coordination of force. Experimental Brain Research, 85(2), 451–457.CrossRefGoogle Scholar
  18. Forssberg, H., Eliasson, A. C., Kinoshita, H., Westling, G., & Johansson, R. S. (1995). Development of human precision grip. IV. Tactile adaptation of isometric finger forces to the frictional condition. Experimental Brain Research, 104(2), 323–330.CrossRefGoogle Scholar
  19. Forssberg, H., Kinoshita, H., Eliasson, A. C., Johansson, R. S., Westling, G., & Gordon, A. M. (1992). Development of human precision grip. II. Anticipatory control of isometric forces targeted for object’s weight. Experimental Brain Research, 90(2), 393–398.CrossRefGoogle Scholar
  20. Gao, J.-H., Parsons, L. M., Bower, J. M., Xiong, J., Li, J., & Fox, P. T. (1996). Cerebellum Implicated in Sensory Acquisition and Discrimination Rather Than Motor Control. Science, 272(5261), 545–547.CrossRefGoogle Scholar
  21. Gordon, A. M., Forssberg, H., Johansson, R. S., Eliasson, A. C., & Westling, G. (1992). Development of human precision grip. III. Integration of visual size cues during the programming of isometric forces. Experimental Brain Research, 90(2), 399–403.CrossRefGoogle Scholar
  22. Gordon, A. M., Forssberg, H., Johansson, R. S., & Westling, G. (1991). Visual size cues in the programming of manipulative forces during precision grip. Experimental Brain Research, 83(3), 477–482.Google Scholar
  23. Gordon, A. M., Quinn, L., Reilmann, R., & Marder, K. (2000). Coordination of prehensile forces during precision grip in Huntington’s disease. Experimental Neurology, 163(1), 136–148.CrossRefGoogle Scholar
  24. Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S. & Chakravarthy, V. S. (2013a). Biologically inspired closed-loop model of precision grip lifting task. Advances in cognitive neurodynamics (III) (543–550) Dordrecht: Springer.Google Scholar
  25. Gupta, A., Avinash, M., Kandaswamy, D., Kumar, M., Devasahayam, S., Babu, K. S., et al. (2013b). Human precision grip performance under variable skin friction conditions: A modelling and experimental study. International Journal of Mind, Brain and Cognition. B. Publications. New Delhi, 4, 7–45.Google Scholar
  26. Gupta, A., Balasubramani, P. P., & Chakravarthy, V. S. (2013c). Computational model of precision grip in Parkinson’s disease: A utility based approach. Frontiers in Computational Neuroscience, 7, 172.CrossRefGoogle Scholar
  27. Ingvarsson, P. E., Gordon, A. M., & Forssberg, H. (1997). Coordination of manipulative forces in Parkinson’s disease. Experimental Neurology, 145(2 Pt 1), 489–501.CrossRefGoogle Scholar
  28. Jenmalm, P., Goodwin, A. W., & Johansson, R. S. (1998). Control of grasp stability when humans lift objects with different surface curvatures. Journal of Neurophysiology, 79(4), 1643–1652.CrossRefGoogle Scholar
  29. Joel, D., Niv, Y., & Ruppin, E. (2002). Actor-critic models of the basal ganglia: New anatomical and computational perspectives. Neural Networks, 15(4–6), 535–547.CrossRefGoogle Scholar
  30. Johansson, R. S., & Cole, K. J. (1994). Grasp stability during manipulative actions. Canadian Journal of Physiology and Pharmacology, 72(5), 511–524.CrossRefGoogle Scholar
  31. Johansson, R. S., Riso, R., Hager, C., & Backstrom, L. (1992). Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Experimental Brain Research, 89(1), 181–191.CrossRefGoogle Scholar
  32. Johansson, R. S., & Westling, G. (1984). Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Experimental Brain Research, 56(3), 550–564.CrossRefGoogle Scholar
  33. Johansson, R. S., & Westling, G. (1988a). Coordinated isometric muscle commands adequately and erroneously programmed for the weight during lifting task with precision grip. Experimental Brain Research, 71(1), 59–71.Google Scholar
  34. Johansson, R. S., & Westling, G. (1988b). Programmed and triggered actions to rapid load changes during precision grip. Experimental Brain Research, 71(1), 72–86.Google Scholar
  35. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47, 263–292.CrossRefzbMATHGoogle Scholar
  36. Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: A model. Neural Networks, 32, 65–73.CrossRefGoogle Scholar
  37. Kandel, E. R., Schwartz, J. H., & Jessell, T. M. (2000). Principles of neural science, New York: McGraw-Hill.Google Scholar
  38. Kim, I., & Inooka, H. (1994). Determination of grasp forces for robot hands based on human capabilities. Control Engineering Practice, 2(3), 415–420.CrossRefGoogle Scholar
  39. Kim, I., Nakazawa, N., & Inooka, H. (2002). Control of a robot hand emulating human’s hand-over motion. Mechatronics, 12(1), 55–69.CrossRefGoogle Scholar
  40. Kinoshita, H., Oku, N., Hashikawa, K., & Nishimura, T. (2000). Functional brain areas used for the lifting of objects using a precision grip: A PET study. Brain Research, 857(1), 119–130.CrossRefGoogle Scholar
  41. Lakshminarayanan, V. R., Chen, M. K., & Santos, L. R. (2011). The evolution of decision-making under risk: Framing effects in monkey risk preferences. Journal of Experimental Social Psychology, 47(3), 689–693.CrossRefGoogle Scholar
  42. Leathers, M. L., & Olson, C. R. (2012). In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science, 338(6103), 132–135.CrossRefGoogle Scholar
  43. Lemon, R. N., Johansson, R., & Westling, G. (1995). Corticospinal control during reach, grasp, and precision lift in man. The Journal of Neuroscience, 15(9), 6145–6156.Google Scholar
  44. Magdoom, K. N., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Computation, 23(2), 477–516.CrossRefzbMATHGoogle Scholar
  45. Manto, M., Bower, J. M., Conforto, A. B., Delgado-García, J. M., da Guarda, S. N. F., Gerwig, M., et al. (2012). Consensus paper: Roles of the cerebellum in motor control—the diversity of ideas on cerebellar involvement in movement. The Cerebellum, 11(2), 457–487.CrossRefGoogle Scholar
  46. Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Crouse, J. J., Gupta, A., Frank, M. J., et al. (2016a). Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: Behavioral and neural studies. Reviews in the Neurosciences, 27(5), 535–548.CrossRefGoogle Scholar
  47. Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Gupta, A., Keri, S., Polner, B., et al. (2016b). Motor symptoms in Parkinson’s disease: A unified framework. Neuroscience and Biobehavioral Reviews, 68, 727–740.CrossRefGoogle Scholar
  48. Muir, R., & Lemon, R. (1983). Corticospinal neurons with a special role in precision grip. Brain Research, 261(2), 312–316.CrossRefGoogle Scholar
  49. Napier, J. R. (1956). The prehensile movements of the human hand. J Bone Joint Surg Br, 38-B(4), 902–913.CrossRefGoogle Scholar
  50. Newman-Norlund, R. D., van Schie, H. T., van Zuijlen, A. M., & Bekkering, H. (2007). The mirror neuron system is more active during complementary compared with imitative action. Nature Neuroscience, 10(7), 817.CrossRefGoogle Scholar
  51. Nowak, D. A., Glasauer, S., & Hermsdörfer, J. (2004). How predictive is grip force control in the complete absence of somatosensory feedback? Brain, 127(1), 182–192.CrossRefGoogle Scholar
  52. Nowak, D. A., & Hermsdörfer, J. (2005). Grip force behavior during object manipulation in neurological disorders: Toward an objective evaluation of manual performance deficits. Movement Disorders, 20(1), 11–25.CrossRefGoogle Scholar
  53. Panger, M. A., Brooks, A. S., Richmond, B. G., & Wood, B. (2002). Older than the Oldowan? Rethinking the emergence of hominin tool use. Evolutionary Anthropology: Issues, News, and Reviews, 11(6), 235–245.CrossRefGoogle Scholar
  54. Pope, P., Wing, A. M., Praamstra, P., & Miall, R. C. (2005). Force related activations in rhythmic sequence production. Neuroimage, 27(4), 909–918.CrossRefGoogle Scholar
  55. Priyadharsini, B. P., Ravindran, B., & Chakravarthy, V. S. (2012). In: A. P. Villa, W. Duch, P. Érdi, F. Masulli & G. Palm (Eds.), Understanding the role of serotonin in basal ganglia through a unified model. Artificial Neural Networks and Machine Learning—ICANN 2012 (Vol. 7552, pp. 467–473). Springer Berlin Heidelberg.Google Scholar
  56. Prodoehl, J., Yu, H., Wasson, P., Corcos, D. M., & Vaillancourt, D. E. (2008). Effects of visual and auditory feedback on sensorimotor circuits in the basal ganglia. Journal of Neurophysiology, 99(6), 3042–3051.CrossRefGoogle Scholar
  57. Saels, P., Thonnard, J. L., Detrembleur, C., & Smith, A. M. (1999). Impact of the surface slipperiness of grasped objects on their subsequent acceleration. Neuropsychologia, 37(6), 751–756.CrossRefGoogle Scholar
  58. Schmitz, C., Jenmalm, P., Ehrsson, H. H., & Forssberg, H. (2005). Brain activity during predictable and unpredictable weight changes when lifting objects. Journal of Neurophysiology, 93(3), 1498–1509.CrossRefGoogle Scholar
  59. Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6, 24.CrossRefGoogle Scholar
  60. Spraker, M. B., Yu, H., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of individual basal ganglia nuclei in force amplitude generation. Journal of Neurophysiology, 98(2), 821–834.CrossRefGoogle Scholar
  61. Strick, P. L. (1976). Anatomical analysis of ventrolateral thalamic input to primate motor cortex. Journal of Neurophysiology, 39(5), 1020–1031.CrossRefGoogle Scholar
  62. Sukumar, D., Rengaswamy, M., & Chakravarthy, V. S. (2012). Modeling the contributions of Basal ganglia and Hippocampus to spatial navigation using reinforcement learning. PLoS ONE, 7(10), e47467.CrossRefGoogle Scholar
  63. Ulloa, A., Bullock, D., & Rhodes, B. J. (2003). Adaptive force generation for precision-grip lifting by a spectral timing model of the cerebellum. Neural Networks, 16(5–6), 521–528.CrossRefGoogle Scholar
  64. Vaillancourt, D. E., Mayka, M. A., Thulborn, K. R., & Corcos, D. M. (2004). Subthalamic nucleus and internal globus pallidus scale with the rate of change of force production in humans. Neuroimage, 23(1), 175–186.CrossRefGoogle Scholar
  65. Vaillancourt, D. E., Yu, H., Mayka, M. A., & Corcos, D. M. (2007). Role of the basal ganglia and frontal cortex in selecting and producing internally guided force pulses. Neuroimage, 36(3), 793–803.CrossRefGoogle Scholar
  66. Van Schaik, C. P., Deaner, R. O., & Merrill, M. Y. (1999). The conditions for tool use in primates: Implications for the evolution of material culture. Journal of Human Evolution, 36(6), 719–741.CrossRefGoogle Scholar
  67. Warren, W. H. (2006). The dynamics of perception and action. Psychological Review, 113(2), 358.CrossRefGoogle Scholar
  68. Wasson, P., Prodoehl, J., Yu, H., Corcos, D., & Vaillancourt, D. (2007). Prediction and the basal ganglia. San Diego: Society for Neuroscience.Google Scholar
  69. Westling, G., & Johansson, R. S. (1984). Factors influencing the force control during precision grip. Experimental Brain Research, 53(2), 277–284.CrossRefGoogle Scholar
  70. Witney, A. G., Wing, A., Thonnard, J.-L., & Smith, A. M. (2004). The cutaneous contribution to adaptive precision grip. Trends in Neurosciences, 27(10), 637–643.CrossRefGoogle Scholar
  71. Wolpert, D. M., & Flanagan, J. R. (2001). Motor prediction. Current Biology, 11(18), R729–R732.CrossRefGoogle Scholar
  72. Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269(5232), 1880–1882.CrossRefGoogle Scholar
  73. Wolpert, D. M., & Landy, M. S. (2012). Motor control is decision-making. Current Opinion in Neurobiology, 22(6), 996–1003.CrossRefGoogle Scholar
  74. Wu, S. W., Delgado, M. R., & Maloney, L. T. (2009). Economic decision-making compared with an equivalent motor task. Proc Natl Acad Sci U S A, 106(15), 6088–6093.CrossRefGoogle Scholar
  75. Wu, T., & Hallett, M. (2013). The cerebellum in Parkinson’s disease. Brain, 136(3), 696–709.CrossRefGoogle Scholar
  76. Zhang, H., Maddula, S. V., & Maloney, L. T. (2010). Planning routes across economic terrains: Maximizing utility, following heuristics. Front Psychol, 1, 214.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ankur Gupta
    • 1
    • 2
  • V. Srinivasa Chakravarthy
    • 3
  1. 1.Department of Medical NeurobiologyThe Hebrew University—Hadassah Medical SchoolJerusalemIsrael
  2. 2.Edmond and Lily Safra Center for Brain ResearchThe Hebrew UniversityJerusalemIsrael
  3. 3.Department of Biotechnology, Bhupat and Jyoti, Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations