Advertisement

A Basal Ganglia Model of Freezing of Gait in Parkinson’s Disease

  • Vignesh Muralidharan
  • Pragathi Priyadharsini Balasubramani
  • V. Srinivasa Chakravarthy
  • Ahmed A. Moustafa
Chapter
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

Freezing of gait (FOG) is a mysterious clinical phenomenon seen in Parkinson’s disease (PD) patients, a neurodegenerative disorder of the basal ganglia (BG), where there is cessation of locomotion under specific contexts. These contexts could include motor initiation, i.e., when starting movement, passing through narrow passages and corridors, while making a turn and as they are about to reach a destination. We have developed computational models of the BG which explains the freezing behavior seen in PD. The model uses reinforcement learning framework, incorporating Actor–Critic architecture, to aid learning of a virtual subject to navigate through these specific contexts. The model captures the velocity changes (slowing down) seen in PD freezers upon encountering a doorway, turns, and under the influence of cognitive load compared to PD non-freezers and healthy controls. The model throws interesting predictions about the pathology of freezing suggesting that dopamine, a key neurochemical deficient in PD, might not be the only reason for the occurrences of such freeze episodes. Other neuromodulators which are involved in action exploration and risk sensitivity influence these motor arrests. Finally, we have incorporated a network model of the BG to understand the network level parameters which influence contextual motor freezing.

References

  1. Almeida, Q. J., & Lebold, C. A. (2010). Freezing of gait in Parkinson’s disease: A perceptual cause for a motor impairment? Journal of Neurology, Neurosurgery and Psychiatry, 81(5), 513–518.CrossRefGoogle Scholar
  2. Balasubramani, P. P., Chakravarthy, V. S., Ravindran, B., & Moustafa, A. A. (2014). An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning.Google Scholar
  3. Balasubramani, P. P., Chakravarthy, V. S., Ravindran, B., & Moustafa, A. A. (2015). A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making. Frontiers in Computational Neuroscience, 9, 76.CrossRefGoogle Scholar
  4. Bell, D. E. (1995). Risk, return, and utility. Management Science, 41(1), 23–30.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Bradshaw, E. J., & Sparrow, W. (2000). The speed-accuracy trade-off in human gait control when running towards targets. Journal of Applied Biomechanics, 16(4), 331–341.CrossRefGoogle Scholar
  6. Chakravarthy, V. S., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Chee, R., Murphy, A., Danoudis, M., Georgiou-Karistianis, N., & Iansek, R. (2009). Gait freezing in Parkinson’s disease and the stride length sequence effect interaction. Brain, 132(8), 2151–2160.CrossRefGoogle Scholar
  8. Cowie, D., Limousin, P., Peters, A., & Day, B. L. (2010). Insights into the neural control of locomotion from walking through doorways in Parkinson’s disease. Neuropsychologia, 48(9), 2750–2757.CrossRefGoogle Scholar
  9. d’Acremont, M., Lu, Z.-L., Li, X., Van der Linden, M., & Bechara, A. (2009). Neural correlates of risk prediction error during reinforcement learning in humans. Neuroimage, 47(4), 1929–1939.CrossRefGoogle Scholar
  10. Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15(4), 495–506.CrossRefGoogle Scholar
  11. Duarte, M., & Latash, M. L. (2007). Effects of postural task requirements on the speed–accuracy trade-off. Experimental Brain Research, 180(3), 457–467.CrossRefGoogle Scholar
  12. Giladi, N., McDermott, M., Fahn, S., Przedborski, S., Jankovic, J., Stern, M.,… Group, P. S. (2001). Freezing of gait in PD prospective assessment in the DATATOP cohort. Neurology, 56(12), 1712–1721.Google Scholar
  13. Gilat, M., Shine, J. M., Walton, C. C., O’Callaghan, C., Hall, J. M., & Lewis, S. J. (2015). Brain activation underlying turning in Parkinson’s disease patients with and without freezing of gait: A virtual reality fMRI study. npj Parkinson’s Disease, 1, 15020.CrossRefGoogle Scholar
  14. Hughes, A. J., Daniel, S. E., Kilford, L., & Lees, A. J. (1992). Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. Journal of Neurology, Neurosurgery and Psychiatry, 55(3), 181–184.CrossRefGoogle Scholar
  15. Hughes, J., Bowes, S., Leeman, A., O’Neill, C., Deshmukh, A., Nicholson, P., et al. (1990). Parkinsonian abnormality of foot strike: A phenomenon of ageing and/or one responsive to levodopa therapy? British Journal of Clinical Pharmacology, 29(2), 179–186.CrossRefGoogle Scholar
  16. Kalva, S. K., Rengaswamy, M., Chakravarthy, V. S., & Gupte, N. (2012). On the neural substrates for exploratory dynamics in basal ganglia: A model. Neural Networks, 32, 65–73.CrossRefGoogle Scholar
  17. Latt, M. D., Lord, S. R., Morris, J. G., & Fung, V. S. (2009). Clinical and physiological assessments for elucidating falls risk in Parkinson’s disease. Movement Disorders, 24(9), 1280–1289.CrossRefGoogle Scholar
  18. Lewis, S. J., & Barker, R. A. (2009). A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism & Related Disorders, 15(5), 333–338.CrossRefGoogle Scholar
  19. LeWitt, P. A. (2012). Norepinephrine: The next therapeutics frontier for Parkinson’s disease. Translational Neurodegeneration, 1(1), 4.CrossRefGoogle Scholar
  20. MacKay, D. G. (1982). The problems of flexibility, fluency, and speed–accuracy trade-off in skilled behavior. Psychological Review, 89(5), 483.CrossRefGoogle Scholar
  21. Magdoom, K., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S.-I., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding Parkinsonian reaching movements. Neural Computation, 23(2), 477–516.CrossRefzbMATHGoogle Scholar
  22. Matar, E., Shine, J. M., Naismith, S. L., & Lewis, S. J. (2013). Using virtual reality to explore the role of conflict resolution and environmental salience in Freezing of Gait in Parkinson’s disease. Parkinsonism & Related Disorders, 19(11), 937–942.CrossRefGoogle Scholar
  23. Morris, M., Iansek, R., Matyas, T., & Summers, J. (1998). Abnormalities in the stride length-cadence relation in parkinsonian gait. Movement Disorders, 13(1), 61–69.CrossRefGoogle Scholar
  24. Muralidharan, V., Balasubramani, P. P., Chakravarthy, V. S., Gilat, M., Lewis, S. J., & Moustafa, A. A. (2017). A neurocomputational model of the effect of cognitive load on freezing of gait in Parkinson’s disease. Frontiers in Human Neuroscience, 10, 649.  https://doi.org/10.3389/fnhum.2016.00649.CrossRefGoogle Scholar
  25. Muralidharan, V., Balasubramani, P. P., Chakravarthy, V. S., Lewis, S. J., & Moustafa, A. A. (2014). A computational model of altered gait patterns in parkinson’s disease patients negotiating narrow doorways. Frontiers in Computational Neuroscience, 7, 190.  https://doi.org/10.3389/fncom.2013.00190.CrossRefGoogle Scholar
  26. Nieuwboer, A., Vercruysse, S., Feys, P., Levin, O., Spildooren, J., & Swinnen, S. (2009). Upper limb movement interruptions are correlated to freezing of gait in Parkinson’s disease. European Journal of Neuroscience, 29(7), 1422–1430.CrossRefGoogle Scholar
  27. Park, H. K., Kim, J. S., Im, K. C., Oh, S. J., Kim, M. J., Lee, J. H., et al. (2009). Functional brain imaging in pure akinesia with gait freezing: [18F] FDG PET and [18F] FP-CIT PET analyses. Movement Disorders, 24(2), 237–245.  https://doi.org/10.1002/mds.22347.CrossRefGoogle Scholar
  28. Park, H. K., Yoo, J. Y., Kwon, M., Lee, J. H., Lee, S. J., Kim, S. R., et al. (2014). Gait freezing and speech disturbance in Parkinson’s disease. Neurological Sciences, 35(3), 357–363.  https://doi.org/10.1007/s10072-013-1519-1.CrossRefGoogle Scholar
  29. Ricciardi, L., Ebreo, M., Graziosi, A., Barbuto, M., Sorbera, C., Morgante, L., et al. (2016). Speech and gait in Parkinson’s disease: When rhythm matters. Parkinsonism & Related Disorders, 32, 42–47.  https://doi.org/10.1016/j.parkreldis.2016.08.013.CrossRefGoogle Scholar
  30. Righetti, L., Buchli, J., & Ijspeert, A. J. (2006). Dynamic hebbian learning in adaptive frequency oscillators. Physica D: Nonlinear Phenomena, 216(2), 269–281.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Rogers, R. D. (2011). The roles of dopamine and serotonin in decision making: Evidence from pharmacological experiments in humans. Neuropsychopharmacology, 36(1), 114–132.CrossRefGoogle Scholar
  32. Russell, V., Allin, R., Lamm, M., & Taljaard, J. (1992). Regional distribution of monoamines and dopamine D 1-and D 2-receptors in the striatum of the rat. Neurochemical Research, 17(4), 387–395.CrossRefGoogle Scholar
  33. Schaafsma, J., Balash, Y., Gurevich, T., Bartels, A., Hausdorff, J. M., & Giladi, N. (2003). Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. European Journal of Neurology, 10(4), 391–398.CrossRefGoogle Scholar
  34. Schultz, W. (2010). Dopamine signals for reward value and risk: Basic and recent data. Behavioral and Brain Functions, 6(1), 24.CrossRefGoogle Scholar
  35. Shine, J. M., Matar, E., Ward, P. B., Frank, M. J., Moustafa, A. A., Pearson, M.,… Lewis, S. J. (2013). Freezing of gait in Parkinson’s disease is associated with functional decoupling between the cognitive control network and the basal ganglia. Brain,  https://doi.org/10.1093/brain/awt272.
  36. Shine, J. M., Moustafa, A. A., Matar, E., Frank, M. J., & Lewis, S. J. (2013b). The role of frontostriatal impairment in freezing of gait in Parkinson’s disease. Frontiers in Systems Neuroscience, 7, 61.  https://doi.org/10.3389/fnsys.2013.00061.CrossRefGoogle Scholar
  37. Sridharan, D., Prashanth, P., & Chakravarthy, V. (2006). The role of the basal ganglia in exploration in a neural model based on reinforcement learning. International Journal of Neural Systems, 16(02), 111–124.CrossRefGoogle Scholar
  38. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). MIT press Cambridge: Cambridge.Google Scholar
  39. Tanaka, S. C., Schweighofer, N., Asahi, S., Shishida, K., Okamoto, Y., Yamawaki, S., et al. (2007). Serotonin differentially regulates short-and long-term prediction of rewards in the ventral and dorsal striatum. PLoS ONE, 2(12), e1333.CrossRefGoogle Scholar
  40. Tohgi, H., Abe, T., Takahashi, S., Takahashi, J., & Hamato, H. (1993). Concentrations of serotonin and its related substances in the cerebrospinal fluid of parkinsonian patients and their relations to the severity of symptoms. Neuroscience Letters, 150(1), 71–74.CrossRefGoogle Scholar
  41. Treisman, A., & Fearnley, S. (1969). The Stroop test: Selective attention to colours and words. Nature, 222(5192), 437–439.CrossRefGoogle Scholar
  42. Vercruysse, S., Spildooren, J., Heremans, E., Wenderoth, N., Swinnen, S., Vandenberghe, W., & Nieuwboer, A. (2013). The neural correlates of upper limb motor blocks in Parkinson’s disease and their relation to freezing of gait. Cereb Cortex,  https://doi.org/10.1093/cercor/bht170.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vignesh Muralidharan
    • 1
    • 2
  • Pragathi Priyadharsini Balasubramani
    • 3
  • V. Srinivasa Chakravarthy
    • 4
    • 5
  • Ahmed A. Moustafa
    • 1
  1. 1.Department of PsychologyUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of NeuroscienceUniversity of Rochester Medical CenterRochesterUSA
  3. 3.Department of BiotechnologyBhupat and Jyoti, Mehta School of Biosciences, Indian Institute of TechnologyChennaiIndia
  4. 4.School of Social Sciences and Psychology & Marcs Institute for Brain and BehaviourWestern Sydney UniversitySydneyAustralia
  5. 5.Marcs Institute for Brain and BehaviourWestern Sydney UniversitySydneyAustralia

Personalised recommendations