The Motor, Cognitive, Affective, and Autonomic Functions of the Basal Ganglia

  • Ahmed A. Moustafa
  • Alekhya Mandali
  • Pragathi Priyadharsini Balasubramani
  • V. Srinivasa Chakravarthy
Chapter
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

The basal ganglia are involved in several processes, ranging from motor to cognitive ones. This chapter briefly discusses the role of the basal ganglia in motor (including reaching, handwriting, precision grip, gait, saccade generation, and speech), cognitive (action selection, decision making, attention, working memory, sequence learning, and sleep regulation), mood/emotion (negative and positive affect), and autonomic (gastrointestinal and cardiovascular) processes. The chapter summarizes key experimental studies explaining the role of the basal ganglia in all of these motor, cognitive, and affective processes. Accordingly, this chapter provides a background on the function of the basal ganglia, which is key information that guides the reader to understand the following computational modeling efforts to understand the role of the basal ganglia in several functional processes.

References

  1. Allcock, L. M., Rowan, E. N., Steen, I. N., Wesnes, K., Kenny, R. A., & Burn, D. J. (2009). Impaired attention predicts falling in Parkinson’s disease. Parkinsonism & Related Disorder, 15(2), 110–115.  https://doi.org/10.1016/j.parkreldis.2008.03.010 S1353-8020(08)00111-9 [pii].
  2. Alm, P. A. (2004). Stuttering and the basal ganglia circuits: A critical review of possible relations. Journal of Communication Disorders, 37(4), 325–369.CrossRefGoogle Scholar
  3. Almeida, Q. J., & Lebold, C. A. (2010). Freezing of gait in Parkinson’s disease: A perceptual cause for a motor impairment? Journal of Neurology, Neurosurgery and Psychiatry, 81(5), 513–518.CrossRefGoogle Scholar
  4. Altug, F., Acar, F., Acar, G., & Cavlak, U. (2011). The influence of subthalamic nucleus deep brain stimulation on physical, emotional, cognitive functions and daily living activities in patients with Parkinson’s disease. Turkish Neurosurgery, 21(2), 140–146.  https://doi.org/10.5137/1019-5149.JTN.3956-10.0.Google Scholar
  5. Anderson, J. M., Hughes, J. D., Rothi, L. J. G., Crucian, G. P., & Heilman, K. (1999). Developmental stuttering and Parkinson’s disease: The effects of levodopa treatment. Journal of Neurology, Neurosurgery and Psychiatry, 66(6), 776–778.CrossRefGoogle Scholar
  6. Appenzeller, O., & Goss, J. E. (1971). Autonomic deficits in Parkinson’s syndrome. Archives of Neurology, 24(1), 50–57.CrossRefGoogle Scholar
  7. Aston-Jones, G., Rajkowski, J., Kubiak, P., & Alexinsky, T. (1994). Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. The Journal of Neuroscience, 14(7), 4467–4480.Google Scholar
  8. Basso, M. A., & Wurtz, R. H. (2002). Neuronal activity in substantia nigra pars reticulata during target selection. Journal of Neuroscience, 22(5), 1883–1894.Google Scholar
  9. Beato, R., Levy, R., Pillon, B., Vidal, C., du Montcel, S. T., Deweer, B., … Cardoso, F. (2008). Working memory in Parkinson’s disease patients: Clinical features and response to levodopa. Arquivos de Neuro-Psiquiatria, 66(2A), 147–151.Google Scholar
  10. Beck, A. K., Lutjens, G., Schwabe, K., Dengler, R., Krauss, J. K., & Sandmann, P. (2017). Thalamic and basal ganglia regions are involved in attentional processing of behaviorally significant events: Evidence from simultaneous depth and scalp EEG. Brain Structure and Function.  https://doi.org/10.1007/s00429-017-1506-z.
  11. Beckstead, R. M., Domesick, V. B., & Nauta, W. J. (1993). Efferent connections of the substantia nigra and ventral tegmental area in the rat. Neuroanatomy (pp. 449–475). Berlin: Springer.Google Scholar
  12. Benecke, R., Rothwell, J., Dick, J., Day, B., & Marsden, C. (1987). Disturbance of sequential movements in patients with Parkinson’s disease. Brain, 110(2), 361–379.CrossRefGoogle Scholar
  13. Benke, T., Hohenstein, C., Poewe, W., & Butterworth, B. (2000). Repetitive speech phenomena in Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 69(3), 319–324.CrossRefGoogle Scholar
  14. Bockova, M., Chladek, J., Jurak, P., Halamek, J., Balaz, M., & Rektor, I. (2011). Involvement of the subthalamic nucleus and globus pallidus internus in attention. Journal of Neural Transmission (Vienna), 118(8), 1235–1245.  https://doi.org/10.1007/s00702-010-0575-4.CrossRefGoogle Scholar
  15. Bocquillon, P., Bourriez, J. L., Palmero-Soler, E., Destee, A., Defebvre, L., Derambure, P., et al. (2012). Role of basal ganglia circuits in resisting interference by distracters: A swLORETA study. PLoS ONE, 7(3), e34239.  https://doi.org/10.1371/journal.pone.0034239.CrossRefGoogle Scholar
  16. Botha, H., & Carr, J. (2012). Attention and visual dysfunction in Parkinson’s disease. Parkinsonism & Related Disorder  https://doi.org/10.1016/j.parkreldis.2012.03.004 S1353-8020(12)00080-6 [pii].
  17. Boulougouris, V., & Tsaltas, E. (2008). Serotonergic and dopaminergic modulation of attentional processes. Progress in Brain Research, 172, 517–542.CrossRefGoogle Scholar
  18. Broderick, M. P., Van Gemmert, A. W., Shill, H. A., & Stelmach, G. E. (2009). Hypometria and bradykinesia during drawing movements in individuals with Parkinson’s disease. Experimental Brain Research, 197(3), 223–233.CrossRefGoogle Scholar
  19. Brown, R., & Marsden, C. (1988). ‘Subcorttcal dementia’: The neuropsychological evidence. Neuroscience, 25(2), 363–387.CrossRefGoogle Scholar
  20. Canter, G. J. (1963). Speech characteristics of patients with Parkinson’s disease: I. Intensity, pitch, and duration. Journal of Speech & Hearing Disorders.Google Scholar
  21. Cantiniaux, S., Vaugoyeau, M., Robert, D., Horrelou-Pitek, C., Mancini, J., Witjas, T., et al. (2010). Comparative analysis of gait and speech in Parkinson’s disease: Hypokinetic or dysrhythmic disorders? Journal of Neurology, Neurosurgery and Psychiatry, 81(2), 177–184.CrossRefGoogle Scholar
  22. Cappa, S., & Abutalebi, J. (1999). Subcortical aphasia. The Concise Encyclopedia of Language Pathology, 319–327.Google Scholar
  23. Carbon, M., & Marie, R. M. (2003). Functional imaging of cognition in Parkinson’s disease. Current Opinion in Neurology, 16(4), 475–480.Google Scholar
  24. Cechetto, D. F., & Shoemaker, J. K. (2009). Functional neuroanatomy of autonomic regulation. Neuroimage, 47(3), 795–803.CrossRefGoogle Scholar
  25. Chevalier, G., & Deniau, J. (1990). Disinhibition as a basic process in the expression of striatal functions. Trends in Neurosciences, 13(7), 277–280.CrossRefGoogle Scholar
  26. Correia, S. S., McGrath, A. G., Lee, A., Graybiel, A. M., & Goosens, K. A. (2016). Amygdala-ventral striatum circuit activation decreases long-term fear. Elife, 5.  https://doi.org/10.7554/elife.12669.
  27. Cowie, D., Limousin, P., Peters, A., & Day, B. L. (2010). Insights into the neural control of locomotion from walking through doorways in Parkinson’s disease. Neuropsychologia, 48(9), 2750–2757.CrossRefGoogle Scholar
  28. Czernecki, V., Schupbach, M., Yaici, S., Levy, R., Bardinet, E., Yelnik, J., … Agid, Y. (2008). Apathy following subthalamic stimulation in Parkinson disease: A dopamine responsive symptom. Movement Disorder, 23(7), 964–969.Google Scholar
  29. Dannlowski, U., Domschke, K., Birosova, E., Lawford, B., Young, R., Voisey, J., … Zwanzger, P. (2013). Dopamine D(3) receptor gene variation: Impact on electroconvulsive therapy response and ventral striatum responsiveness in depression. International Journal of Neuropsychopharmacology, 16(7), 1443–1459.  https://doi.org/10.1017/s1461145711001659 S1461145711001659 [pii].
  30. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879.CrossRefGoogle Scholar
  31. Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15(4), 495–506.CrossRefGoogle Scholar
  32. Edwards, L., Quigley, E., Hofman, R., & Pfeiffer, R. (1993). Gastrointestinal symptoms in parkinson disease: 18-month follow-up study. Movement Disorders, 8(1), 83–86.CrossRefGoogle Scholar
  33. Eitan, R., Shamir, R. R., Linetsky, E., Rosenbluh, O., Moshel, S., Ben-Hur, T., … Israel, Z. (2013). Asymmetric right/left encoding of emotions in the human subthalamic nucleus. Frontiers in Systems Neuroscience, 7, 69.  https://doi.org/10.3389/fnsys.2013.00069.
  34. Espinosa-Parrilla, J. F., Baunez, C., & Apicella, P. (2013). Linking reward processing to behavioral output: Motor and motivational integration in the primate subthalamic nucleus. Frontiers in Computational Neuroscience, 7, 175.  https://doi.org/10.3389/fncom.2013.00175.CrossRefGoogle Scholar
  35. Faist, M., Xie, J., Kurz, D., Berger, W., Maurer, C., Pollak, P., et al. (2001). Effect of bilateral subthalamic nucleus stimulation on gait in Parkinson’s disease. Brain, 124(8), 1590–1600.CrossRefGoogle Scholar
  36. Fallon, S. J., Mattiesing, R. M., Muhammed, K., Manohar, S., & Husain, M. (2017). Fractionating the neurocognitive mechanisms underlying working memory: Independent effects of dopamine and Parkinson’s disease. Cerebral Cortex, 1–12.  https://doi.org/10.1093/cercor/bhx242.
  37. Fellows, S. J., Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain: A Journal of Neurology, 121(9), 1771–1784.CrossRefGoogle Scholar
  38. Fournet, N., Moreaud, O., Roulin, J. L., Naegele, B., & Pellat, J. (2000). Working memory functioning in medicated Parkinson’s disease patients and the effect of withdrawal of dopaminergic medication. Neuropsychology, 14(2), 247–253.CrossRefGoogle Scholar
  39. Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17(1), 51–72.CrossRefGoogle Scholar
  40. Fuster, J. M. (1973). Unit activity in prefrontal cortex during delayed-response performance: Neuronal correlates of transient memory. Journal of Neurophysiology.Google Scholar
  41. Goldman-Rakic, P. S. (1991). Cellular and circuit basis of working memory in prefrontal cortex of nonhuman primates. Progress in Brain Research, 85, 325–336.CrossRefGoogle Scholar
  42. Goldstein, D., Holmes, C., Dendi, R., Bruce, S., & Li, S.-T. (2002). Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology, 58(8), 1247–1255.CrossRefGoogle Scholar
  43. Graham, A. M., Buss, C., Rasmussen, J. M., Rudolph, M. D., Demeter, D. V., Gilmore, J. H., … Fair, D. A. (2016). Implications of newborn amygdala connectivity for fear and cognitive development at 6-months-of-age. Developmental Cognitive Neuroscience, 18, 12–25.  https://doi.org/10.1016/j.dcn.2015.09.006.
  44. Grillner, S., Robertson, B., & Stephenson-Jones, M. (2013). The evolutionary origin of the vertebrate basal ganglia and its role in action selection. The Journal of Physiology, 591(22), 5425–5431.CrossRefGoogle Scholar
  45. Grossman, M., Carvell, S., Stern, M. B., Gollomp, S., & Hurtig, H. I. (1992). Sentence comprehension in Parkinson’s disease: The role of attention and memory. Brain and Language, 42(4), 347–384.CrossRefGoogle Scholar
  46. Grossman, M., Zurif, E., Lee, C., Prather, P., Kalmanson, J., Stern, M. B., et al. (2002). Information processing speed and sentence comprehension in Parkinson’s disease. Neuropsychology, 16(2), 174.CrossRefGoogle Scholar
  47. Gubbay, S., & Barwick, D. (1966). Two cases of accidental hypothermia in Parkinson’s disease with unusual EEG findings. Journal of Neurology, Neurosurgery and Psychiatry, 29(5), 459.CrossRefGoogle Scholar
  48. Hall, J. M., O’Callaghan, C., Shine, J. M., Muller, A. J., Phillips, J. R., Walton, C. C., … Moustafa, A. A. (2016). Dysfunction in attentional processing in patients with Parkinson’s disease and visual hallucinations. Journal of Neural Transmission (Vienna), 123(5), 503–507.  https://doi.org/10.1007/s00702-016-1528-3.
  49. Harel, B., Cannizzaro, M., & Snyder, P. J. (2004). Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: A longitudinal case study. Brain and Cognition, 56(1), 24–29.CrossRefGoogle Scholar
  50. Harrington, D. L., & Haaland, K. Y. (1991). Sequencing in Parkinson’s disease: Abnormalities in programming and controlling movement. Brain, 114(1), 99–115.Google Scholar
  51. Harris, C. M., & Wolpert, D. M. (1998). Signal-dependent noise determines motor planning. Nature, 394(6695), 780–784.CrossRefGoogle Scholar
  52. Hartelius, L., & Svensson, P. (1994). Speech and swallowing symptoms associated with Parkinson’s disease and multiple sclerosis: a survey. Folia Phoniatrica et Logopaedica, 46(1), 9–17.CrossRefGoogle Scholar
  53. Hausdorff, J. M., Cudkowicz, M. E., Firtion, R., Wei, J. Y., & Goldberger, A. L. (1998). Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Movement Disorders, 13(3), 428–437.CrossRefGoogle Scholar
  54. Hayes, A. E., Davidson, M. C., Keele, S. W., & Rafal, R. D. (1998). Toward a functional analysis of the basal ganglia. Journal of Cognitive Neuroscience, 10(2), 178–198.CrossRefGoogle Scholar
  55. Herzallah, M. M., Moustafa, A. A., Misk, A. J., Al-Dweib, L. H., Abdelrazeq, S. A., Myers, C. E., et al. (2010). Depression impairs learning whereas anticholinergics impair transfer generalization in Parkinson patients tested on dopaminergic medications. Cognitive and Behavioral Neurology, 23(2), 98–105.  https://doi.org/10.1097/WNN.0b013e3181df3048.CrossRefGoogle Scholar
  56. Hikosaka, O., Nakahara, H., Rand, M. K., Sakai, K., Lu, X., Nakamura, K., … Doya, K. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22(10), 464–471.Google Scholar
  57. Hikosaka, O., Nakamura, K., Sakai, K., & Nakahara, H. (2002). Central mechanisms of motor skill learning. Current Opinion in Neurobiology, 12(2), 217–222.CrossRefGoogle Scholar
  58. Hikosaka, O., Takikawa, Y., & Kawagoe, R. (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiological Reviews, 80(3), 953–978.CrossRefGoogle Scholar
  59. Hikosaka, O., & Wurtz, R. H. (1983). Effects on eye movements of a GABA agonist and antagonist injected into monkey superior colliculus. Brain Research, 272(2), 368–372.CrossRefGoogle Scholar
  60. Hodgson, T. L., Dittrich, W. H., Henderson, L., & Kennard, C. (1999). Eye movements and spatial working memory in Parkinson’s disease. Neuropsychologia, 37(8), 927–938.CrossRefGoogle Scholar
  61. Inglis, W. L., & Winn, P. (1995). The pedunculopontine tegmental nucleus: Where the striatum meets the reticular formation. Progress in Neurobiology, 47(1), 1–29.CrossRefGoogle Scholar
  62. Ingvarsson, P. E., Gordon, A. M., & Forssberg, H. (1997). Coordination of manipulative forces in Parkinson’s disease. Experimental Neurology, 145(2), 489–501.CrossRefGoogle Scholar
  63. Isoda, M., & Hikosaka, O. (2008). Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. Journal of Neuroscience, 28(28), 7209–7218.  https://doi.org/10.1523/jneurosci.0487-08.2008 28/28/7209 [pii].
  64. Jepma, M., & Nieuwenhuis, S. (2011). Pupil diameter predicts changes in the exploration–exploitation trade-off: Evidence for the adaptive gain theory. Journal of Cognitive Neuroscience, 23(7), 1587–1596.CrossRefGoogle Scholar
  65. Kallio, M., Haapaniemi, T., Turkka, J., Suominen, K., Tolonen, U., Sotaniemi, K., … Myllylä, V. (2000). Heart rate variability in patients with untreated Parkinson’s disease. European Journal of Neurology, 7(6), 667–672.Google Scholar
  66. Karachi, C., Yelnik, J., Tande, D., Tremblay, L., Hirsch, E. C., & Francois, C. (2005). The pallidosubthalamic projection: An anatomical substrate for nonmotor functions of the subthalamic nucleus in primates. Movement Disorders, 20(2), 172–180.CrossRefGoogle Scholar
  67. Kato, M., Miyashita, N., Hikosaka, O., Matsumura, M., Usui, S., & Kori, A. (1995). Eye movements in monkeys with local dopamine depletion in the caudate nucleus. I. Deficits in spontaneous saccades. Journal of Neuroscience, 15(1), 912–927.Google Scholar
  68. Kegl, J., Cohen, H., & Poizner, H. (1999). Articulatory consequences of Parkinson’s disease: Perspectives from two modalities. Brain and Cognition, 40(2), 355–386.CrossRefGoogle Scholar
  69. Kermadi, I., & Joseph, J. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology, 74(3), 911–933.CrossRefGoogle Scholar
  70. Kimmeskamp, S., & Hennig, E. M. (2001). Heel to toe motion characteristics in Parkinson patients during free walking. Clinical Biomechanics, 16(9), 806–812.CrossRefGoogle Scholar
  71. Kori, A., Miyashita, N., Kato, M., Hikosaka, O., Usui, S., & Matsumura, M. (1995). Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II. Deficits in voluntary saccades. Journal of Neuroscience, 15(1), 928–941.Google Scholar
  72. Kotz, S. A., Frisch, S., Von Cramon, D. Y., & Friederici, A. D. (2003). Syntactic language processing: ERP lesion data on the role of the basal ganglia. Journal of the International Neuropsychological Society, 9(7), 1053–1060.CrossRefGoogle Scholar
  73. Kotz, S. A., Schwartze, M., & Schmidt-Kassow, M. (2009). Non-motor basal ganglia functions: A review and proposal for a model of sensory predictability in auditory language perception. Cortex, 45(8), 982–990.CrossRefGoogle Scholar
  74. Kravitz, A. V., Freeze, B. S., Parker, P. R., Kay, K., Thwin, M. T., Deisseroth, K., et al. (2010). Regulation of parkinsonian motor behaviors by optogenetic control of basal ganglia circuitry. Nature, 466(7306), 622.CrossRefGoogle Scholar
  75. Kreitzer, A. C., & Malenka, R. C. (2008). Striatal plasticity and basal ganglia circuit function. Neuron, 60(4), 543–554.CrossRefGoogle Scholar
  76. Kropotov, J. D., & Etlinger, S. C. (1999). Selection of actions in the basal ganglia–thalamocortical circuits: Review and model. International Journal of Psychophysiology, 31(3), 197–217.CrossRefGoogle Scholar
  77. Laasonen-Balk, T., Kuikka, J., Viinamaki, H., Husso-Saastamoinen, M., Lehtonen, J., & Tiihonen, J. (1999). Striatal dopamine transporter density in major depression. Psychopharmacology (Berl), 144(3), 282–285.CrossRefGoogle Scholar
  78. Lazarus, M., Chen, J. F., Urade, Y., & Huang, Z. L. (2013). Role of the basal ganglia in the control of sleep and wakefulness. Current Opinion in Neurobiology, 23(5), 780–785.  https://doi.org/10.1016/j.conb.2013.02.001.CrossRefGoogle Scholar
  79. Lena, I., Parrot, S., Deschaux, O., Muffat‐Joly, S., Sauvinet, V., Renaud, B., … Gottesmann, C. (2005). Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. Journal of Neuroscience Research, 81(6), 891–899.Google Scholar
  80. Levy, R., & Dubois, B. (2006). Apathy and the functional anatomy of the prefrontal cortex-basal ganglia circuits. Cerebral Cortex, 16(7), 916–928.CrossRefGoogle Scholar
  81. Lewis, S. J., & Barker, R. A. (2009). A pathophysiological model of freezing of gait in Parkinson’s disease. Parkinsonism & Related Disorders, 15(5), 333–338.CrossRefGoogle Scholar
  82. Lewis, S. J., Dove, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2004). Striatal contributions to working memory: A functional magnetic resonance imaging study in humans. European Journal of Neuroscience, 19(3), 755–760.CrossRefGoogle Scholar
  83. Lewis, S. J., Slabosz, A., Robbins, T. W., Barker, R. A., & Owen, A. M. (2005). Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia, 43(6), 823–832.CrossRefGoogle Scholar
  84. Lieberman, P. (1991). Uniquely human: The evolution of speech, thought, and selfless behavior. Cambridge, MA: Harvard University Press.Google Scholar
  85. Lipford, M. C., & Silber, M. H. (2012). Long-term use of pramipexole in the management of restless legs syndrome. Sleep Medicine, 13(10), 1280–1285.CrossRefGoogle Scholar
  86. Lubik, S., Fogel, W., Tronnier, V., Krause, M., König, J., & Jost, W. (2006). Gait analysis in patients with advanced Parkinson disease: Different or additive effects on gait induced by levodopa and chronic STN stimulation. Journal of Neural Transmission (Vienna), 113(2), 163–173.CrossRefGoogle Scholar
  87. Majsak, M. J., Kaminski, T., Gentile, A. M., & Flanagan, J. R. (1998). The reaching movements of patients with Parkinson’s disease under self-determined maximal speed and visually cued conditions. Brain: A Journal of Neurology, 121(4), 755–766.CrossRefGoogle Scholar
  88. Marsden, C. (1982). The mysterious motor function of the basal ganglia: The Robert Wartenberg Lecture. Neurology.Google Scholar
  89. Maruyama, T., & Yanagisawa, N. (2006). Cognitive impact on freezing of gait in Parkinson’s disease. Parkinsonism & Related Disorders, 12, S77–S82.CrossRefGoogle Scholar
  90. McNab, F., Leroux, G., Strand, F., Thorell, L., Bergman, S., & Klingberg, T. (2008). Common and unique components of inhibition and working memory: An fMRI, within-subjects investigation. Neuropsychologia, 46(11), 2668–2682.CrossRefGoogle Scholar
  91. Menon, V., Anagnoson, R. T., Glover, G. H., & Pfefferbaum, A. (2000). Basal ganglia involvement in memory-guided movement sequencing. NeuroReport, 11(16), 3641–3645.CrossRefGoogle Scholar
  92. Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.CrossRefGoogle Scholar
  93. Moreau, C., Ozsancak, C., Blatt, J. L., Derambure, P., Destee, A., & Defebvre, L. (2007). Oral festination in Parkinson’s disease: Biomechanical analysis and correlation with festination and freezing of gait. Movement Disorders, 22(10), 1503–1506.CrossRefGoogle Scholar
  94. Moretti, R., & Signori, R. (2016). Neural correlates for apathy: Frontal-prefrontal and parietal cortical-subcortical circuits. Frontiers in Aging Neuroscience, 8, 289.  https://doi.org/10.3389/fnagi.2016.00289.Google Scholar
  95. Moriizumi, T., Nakamura, Y., Tokuno, H., Kitao, Y., & Kudo, M. (1988). Topographic projections from the basal ganglia to the nucleus tegmenti pedunculopontinus pars compacta of the cat with special reference to pallidal projections. Experimental Brain Research, 71(2), 298–306.CrossRefGoogle Scholar
  96. Morris, M., Iansek, R., Matyas, T., & Summers, J. (1998). Abnormalities in the stride length-cadence relation in parkinsonian gait. Movement Disorders, 13(1), 61–69.CrossRefGoogle Scholar
  97. Moustafa, & Gluck, M. A. (2011). A neurocomputational model of dopamine and prefrontal-striatal interactions during multicue category learning by Parkinson patients. Journal of Cognitive Neuroscience, 23(1), 151–167. https://doi.org/10.1162/jocn.2010.21420.CrossRefGoogle Scholar
  98. Moustafa, A. A., Bell, P., Eissa, A. M., & Hewedi, D. H. (2013a). The effects of clinical motor variables and medication dosage on working memory in Parkinson’s disease. Brain and Cognition, 82(2), 137–145.  https://doi.org/10.1016/j.bandc.2013.04.001.CrossRefGoogle Scholar
  99. Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Crouse, J. J., Gupta, A., Frank, M. J., … Jahanshahi, M. (2016). Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: Behavioral and neural studies. Reviews in the Neurosciences.  https://doi.org/10.1515/revneuro-2015-0070.
  100. Moustafa, A. A., Herzallah, M. M., & Gluck, M. A. (2013b). Dissociating the cognitive effects of levodopa versus dopamine agonists in a neurocomputational model of learning in Parkinson’s disease. Neurodegenerative Diseases, 11(2), 102–111.  https://doi.org/10.1159/000341999.CrossRefGoogle Scholar
  101. Moustafa, A. A., Sherman, S. J., & Frank, M. J. (2008). A dopaminergic basis for working memory, learning and attentional shifting in Parkinsonism. Neuropsychologia, 46(13), 3144–3156.  https://doi.org/10.1016/j.neuropsychologia.2008.07.011 S0028-3932(08)00297-2 [pii].
  102. Müller, F., & Abbs, J. H. (1990). Precision grip in parkinsonian patients. Advances in Neurology, 53, 191.Google Scholar
  103. Murillo-Rodríguez, E., Haro, R., Palomero-Rivero, M., Millán-Aldaco, D., & Drucker-Colín, R. (2007). Modafinil enhances extracellular levels of dopamine in the nucleus accumbens and increases wakefulness in rats. Behavioural Brain Research, 176(2), 353–357.CrossRefGoogle Scholar
  104. Murnaghan, G. (1961). Neurogenic disorders of the bladder in Parkinsonism. BJU International, 33(4), 403–409.CrossRefGoogle Scholar
  105. Mushiake, H., & Strick, P. L. (1995). Pallidal neuron activity during sequential arm movements. Journal of Neurophysiology, 74(6), 2754–2758.CrossRefGoogle Scholar
  106. Nakahara, H., Doya, K., & Hikosaka, O. (2001). Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences—A computational approach. Journal of Cognitive Neuroscience, 13(5), 626–647.CrossRefGoogle Scholar
  107. Napier, J. R. (1956). The prehensile movements of the human hand. Bone & Joint Journal, 38(4), 902–913.Google Scholar
  108. Neafsey, E. J. (1991). Prefrontal cortical control of the autonomic nervous system: Anatomical and physiological observations. Progress in Brain Research, 85, 147–166.CrossRefGoogle Scholar
  109. Nenadic, I., Gaser, C., Volz, H.-P., Rammsayer, T., Häger, F., & Sauer, H. (2003). Processing of temporal information and the basal ganglia: New evidence from fMRI. Experimental Brain Research, 148(2), 238–246.CrossRefGoogle Scholar
  110. Nieoullon, A. (2002). Dopamine and the regulation of cognition and attention. Progress in Neurobiology, 67(1), 53–83.CrossRefGoogle Scholar
  111. O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38(2), 329–337.CrossRefGoogle Scholar
  112. O’Doherty, J. P. (2004). Reward representations and reward-related learning in the human brain: Insights from neuroimaging. Current Opinion in Neurobiology, 14(6), 769–776.CrossRefGoogle Scholar
  113. Owen, A. M., Doyon, J., Dagher, A., Sadikot, A., & Evans, A. C. (1998). Abnormal basal ganglia outflow in Parkinson’s disease identified with PET. Brain: A Journal of Neurology, 121(5), 949–965.CrossRefGoogle Scholar
  114. Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25(1), 563–593.CrossRefGoogle Scholar
  115. Pan, P. M., Sato, J. R., Salum, G. A., Rohde, L. A., Gadelha, A., Zugman, A., … Stringaris, A. (2017). Ventral striatum functional connectivity as a predictor of adolescent depressive disorder in a longitudinal community-based sample. American Journal of Psychiatry, 174(11), 1112–1119.  https://doi.org/10.1176/appi.ajp.2017.17040430.
  116. Pazo, J., & Medina, J. (1983). Cholinergic mechanisms within the caudate nucleus mediate changes in blood pressure. Neuropharmacology, 22(6), 717–720.CrossRefGoogle Scholar
  117. Pazo, J. H. (1976). Caudate-putamen and globus pallidus influences on a visceral reflex. Acta physiologica latino americana, 26(4), 260–266.Google Scholar
  118. Pinsker, M., Amtage, F., Berger, M., Nikkhah, G., & van Elst, L. T. (2013). Psychiatric side-effects of bilateral deep brain stimulation for movement disorders. Acta Neurochirurgica Supplementum, 117, 47–51.  https://doi.org/10.1007/978-3-7091-1482-7_8.Google Scholar
  119. Porter, R. W., & Bors, E. (1971). Neurogenic bladder in Parkinsonism: Effect of thalamotomy. Journal of Neurosurgery, 34(1), 27–32.CrossRefGoogle Scholar
  120. Postle, B. R., & D’Esposito, M. (1999). Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: An event-related fMRI study. Cognitive Brain Research, 8(2), 107–115.CrossRefGoogle Scholar
  121. Preuschoff, K., Bossaerts, P., & Quartz, S. R. (2006). Neural differentiation of expected reward and risk in human subcortical structures. Neuron, 51(3), 381–390.CrossRefGoogle Scholar
  122. Rascol, O., Sabatini, U., Simonetta-Moreau, M., Montastruc, J., Rascol, A., & Clanet, M. (1991). Square wave jerks in parkinsonian syndromes. Journal of Neurology, Neurosurgery and Psychiatry, 54(7), 599–602.CrossRefGoogle Scholar
  123. Rauch, S. L., Whalen, P. J., Savage, C. R., Curran, T., Kendrick, A., Brown, H. D., … Rosen, B. R. (1997). Striatal recruitment during an implicit sequence learning task as measured by functional magnetic resonance imaging. Human Brain Mapping, 5(2), 124-132.Google Scholar
  124. Remy, P., Doder, M., Lees, A., Turjanski, N., & Brooks, D. (2005). Depression in Parkinson’s disease: Loss of dopamine and noradrenaline innervation in the limbic system. Brain, 128(Pt 6), 1314–1322.  https://doi.org/10.1093/brain/awh445.CrossRefGoogle Scholar
  125. Resstel, L., & Correa, F. (2006). Involvement of the medial prefrontal cortex in central cardiovascular modulation in the rat. Autonomic Neuroscience, 126, 130–138.CrossRefGoogle Scholar
  126. Reznikov, R., Binko, M., Nobrega, J. N., & Hamani, C. (2016). Deep brain stimulation in animal models of fear, anxiety, and posttraumatic stress disorder. Neuropsychopharmacology, 41(12), 2810–2817.  https://doi.org/10.1038/npp.2016.34.CrossRefGoogle Scholar
  127. Robbins, T. W. (2007). Shifting and stopping: Fronto-striatal substrates, neurochemical modulation and clinical implications. Philosophical Transactions of the Royal Society of London: Series B, Biological Sciences, 362(1481), 917–932.CrossRefGoogle Scholar
  128. Rogers, R. D. (2010). The roles of dopamine and serotonin in decision making: Evidence from pharmacological experiments in humans. Neuropsychopharmacology, 36(1), 114–132.CrossRefGoogle Scholar
  129. Russell, V., Allin, R., Lamm, M., & Taljaard, J. (1992). Regional distribution of monoamines and dopamine D1-and D2-receptors in the striatum of the rat. Neurochemical Research, 17(4), 387–395.CrossRefGoogle Scholar
  130. Sahyoun, C., Floyer-Lea, A., Johansen-Berg, H., & Matthews, P. (2004). Towards an understanding of gait control: Brain activation during the anticipation, preparation and execution of foot movements. Neuroimage, 21(2), 568–575.CrossRefGoogle Scholar
  131. Saint-Cyr, J. A. (2003). Frontal-striatal circuit functions: Context, sequence, and consequence. Journal of the International Neuropsychological Society, 9(1), 103–127.CrossRefGoogle Scholar
  132. Santens, P., De Letter, M., Van Borsel, J., De Reuck, J., & Caemaert, J. (2003). Lateralized effects of subthalamic nucleus stimulation on different aspects of speech in Parkinson’s disease. Brain and Language, 87(2), 253–258.CrossRefGoogle Scholar
  133. Sato, M., & Hikosaka, O. (2002). Role of primate substantia nigra pars reticulata in reward-oriented saccadic eye movement. Journal of Neuroscience, 22(6), 2363–2373.Google Scholar
  134. Sawaguchi, T., & Goldman-Rakic, P. S. (1994). The role of D1-dopamine receptor in working memory: Local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. Journal of Neurophysiology, 71(2), 515–528.CrossRefGoogle Scholar
  135. Schaal, S., & Schweighofer, N. (2005). Computational motor control in humans and robots. Current Opinion in Neurobiology, 15(6), 675–682.CrossRefGoogle Scholar
  136. Schirmer, A. (2004). Timing speech: A review of lesion and neuroimaging findings. Cognitive Brain Research, 21(2), 269–287.MathSciNetCrossRefGoogle Scholar
  137. Schmalbach, B., Gunther, V., Raethjen, J., Wailke, S., Falk, D., Deuschl, G., et al. (2014). The subthalamic nucleus influences visuospatial attention in humans. Journal of Cognitive Neuroscience, 26(3), 543–550. https://doi.org/10.1162/jocn_a_00502.CrossRefGoogle Scholar
  138. Schneider, F., Habel, U., Volkmann, J., Regel, S., Kornischka, J., Sturm, V., & Freund, H. J. (2003). Deep brain stimulation of the subthalamic nucleus enhances emotional processing in Parkinson disease. Archives of General Psychiatry, 60(3), 296–302. yoa10144 [pii].Google Scholar
  139. Senard, J.-M., Brefel-Courbon, C., Rascol, O., & Montastruc, J.-L. (2001). Orthostatic hypotension in patients with Parkinson’s disease. Drugs and Aging, 18(7), 495–505.CrossRefGoogle Scholar
  140. Seymour, B., Daw, N., Dayan, P., Singer, T., & Dolan, R. (2007). Differential encoding of losses and gains in the human striatum. Journal of Neuroscience, 27(18), 4826–4831.CrossRefGoogle Scholar
  141. Shadmehr, R., & Krakauer, J. W. (2008). A computational neuroanatomy for motor control. Experimental Brain Research, 185(3), 359–381.CrossRefGoogle Scholar
  142. Shine, J. M., Matar, E., Ward, P. B., Bolitho, S. J., Pearson, M., Naismith, S. L., & Lewis, S. J. (2013). Differential neural activation patterns in patients with Parkinson’s disease and freezing of gait in response to concurrent cognitive and motor load. PLoS One, 8(1), e52602.Google Scholar
  143. Smith, Y., Beyan, M. D., Shink, E., & Bolam, J. P. (1998). Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience (Oxford), 86, 353–388.Google Scholar
  144. Soliveri, P., Brown, R., Jahanshahi, M., Caraceni, T., & Marsden, C. (1997). Learning manual pursuit tracking skills in patients with Parkinson’s disease. Brain: A Journal of Neurology, 120(8), 1325–1337.CrossRefGoogle Scholar
  145. Steele, J. D., Kumar, P., & Ebmeier, K. P. (2007). Blunted response to feedback information in depressive illness. Brain, 130(Pt 9), 2367–2374.  https://doi.org/10.1093/brain/awm150.CrossRefGoogle Scholar
  146. Subramanian, L., Hindle, J. V., Jackson, M. C., & Linden, D. E. (2010). Dopamine boosts memory for angry faces in Parkinson’s disease. Movement Disorders, 25(16), 2792–2799.CrossRefGoogle Scholar
  147. Svennilson, E., Torvik, A., Lowe, R., & Leksell, L. (1960). Treatment of parkinsonism by stereotactic thermolesions in the pallidal region. A clinical evaluation of 81 cases. Acta Psychiatrica Scandinavica, 35(3), 358–377.CrossRefGoogle Scholar
  148. Takakusaki, K., Habaguchi, T., Ohtinata-Sugimoto, J., Saitoh, K., & Sakamoto, T. (2003). Basal ganglia efferents to the brainstem centers controlling postural muscle tone and locomotion: A new concept for understanding motor disorders in basal ganglia dysfunction. Neuroscience, 119(1), 293–308.CrossRefGoogle Scholar
  149. Takakusaki, K., Ohta, R., & Harada, H. (2007). Modulation of the excitability of hindlimb motor neurons during fictive locomotion by the basal ganglia efferents to the brainstem in decerebrate cats. Paper Presented at the Social Neuroscience Abstract.Google Scholar
  150. Takakusaki, K., Saitoh, K., Harada, H., & Kashiwayanagi, M. (2004). Role of basal ganglia–brainstem pathways in the control of motor behaviors. Neuroscience Research, 50(2), 137–151.CrossRefGoogle Scholar
  151. Takakusaki, K., Tomita, N., & Yano, M. (2008). Substrates for normal gait and pathophysiology of gait disturbances with respect to the basal ganglia dysfunction. Journal of Neurology, 255, 19–29.CrossRefGoogle Scholar
  152. Tan, E. (2003). Piribedil-induced sleep attacks in Parkinson’s disease. Fundamental & Clinical Pharmacology, 17(1), 117–119.CrossRefGoogle Scholar
  153. Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2004). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Nature Neuroscience, 7(8), 887–893.CrossRefGoogle Scholar
  154. Teulings, H.-L., Contreras-Vidal, J. L., Stelmach, G. E., & Adler, C. H. (1997). Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Experimental Neurology, 146(1), 159–170.CrossRefGoogle Scholar
  155. Tomasi, D., Chang, L., Caparelli, E., & Ernst, T. (2007). Different activation patterns for working memory load and visual attention load. Brain Research, 1132, 158–165.CrossRefGoogle Scholar
  156. Tucha, O., Mecklinger, L., Thome, J., Reiter, A., Alders, G., Sartor, H., … Lange, K. (2006). Kinematic analysis of dopaminergic effects on skilled handwriting movements in Parkinson’s disease. Journal of Neural Transmission (Vienna), 113(5), 609–623.Google Scholar
  157. Ungless, M. A. (2004). Dopamine: The salient issue. Trends in Neurosciences, 27(12), 702–706.CrossRefGoogle Scholar
  158. Van Buren, J., Li, C., & Ojemann, G. (1966). The fronto-striatal arrest response in man. Electroencephalography and Clinical Neurophysiology, 21(2), 114–130.CrossRefGoogle Scholar
  159. Verberne, A. J., & Owens, N. C. (1998). Cortical modulation of thecardiovascular system. Progress in Neurobiology, 54(2), 149–168.CrossRefGoogle Scholar
  160. Wang, E., Metman, L. V., Bakay, R., Arzbaecher, J., & Bernard, B. (2003). The effect of unilateral electrostimulation of the subthalamic nucleus on respiratory/phonatory subsystems of speech production in Parkinson’s disease—A preliminary report. Clinical Linguistics & Phonetics, 17(4–5), 283–289.CrossRefGoogle Scholar
  161. Witt, K., Kopper, F., Deuschl, G., & Krack, P. (2006). Subthalamic nucleus influences spatial orientation in extra-personal space. Movement Disorders, 21(3), 354–361.  https://doi.org/10.1002/mds.20728.CrossRefGoogle Scholar
  162. Wolfe, V., Garvin, J., Bacon, M., & Waldrop, W. (1975). Speech changes in Parkinson’s disease during treatment with L-dopa. Journal of Communication Disorders, 8(3), 271–279.CrossRefGoogle Scholar
  163. Yogev, G., Giladi, N., Peretz, C., Springer, S., Simon, E. S., & Hausdorff, J. M. (2005). Dual tasking, gait rhythmicity, and Parkinson’s disease: Which aspects of gait are attention demanding? European Journal of Neuroscience, 22(5), 1248–1256.  https://doi.org/10.1111/j.1460-9568.2005.04298.x EJN4298 [pii].
  164. Zahrt, J., Taylor, J. R., Mathew, R. G., & Arnsten, A. F. (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. Journal of Neuroscience, 17(21), 8528–8535.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Ahmed A. Moustafa
    • 1
    • 2
  • Alekhya Mandali
    • 3
  • Pragathi Priyadharsini Balasubramani
    • 4
  • V. Srinivasa Chakravarthy
    • 5
  1. 1.School of Social Sciences and Psychology & Marcs Institute for Brain and BehaviourWestern Sydney UniversitySydneyAustralia
  2. 2.Marcs Institute for Brain and BehaviourWestern Sydney UniversitySydneyAustralia
  3. 3.Department of Psychiatry, School of Clinical MedicineUniversity of CambridgeCambridgeUK
  4. 4.Department of NeuroscienceUniversity of Rochester Medical CenterRochesterUSA
  5. 5.Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of TechnologyMadras, ChennaiIndia

Personalised recommendations