The Molecular, Cellular, and Systems-Level Structure of the Basal Ganglia

  • Alekhya Mandali
  • V. Srinivasa Chakravarthy
  • Ahmed A. Moustafa
Part of the Cognitive Science and Technology book series (CSAT)


This chapter provides a brief overview of the systems, cellular, and molecular structure of the various nuclei of basal ganglia (BG) such as striatum, STN, GPe, GPi, and the SNr including the various neurotransmitters impacting its function. We start with the system-level connection between cortex and BG and then cover the various cell types, receptors (such as dopaminergic, acetylcholine) present on each of the BG nuclei. The effect of Parkinson’s disease on their dynamics especially the STN–GPe oscillatory network is then discussed. The dopaminergic systems SNc and VTA are also covered in terms of their architecture and input–output synaptic projection patterns. Finally, a short intro to the multiple cortico-BG loops and their functional relevance is discussed. This brief overview helps provide background on BG structure, which is the basis of several models we present in this book.


  1. Alberico, S. L., Cassell, M. D., & Narayanan, N. S. (2015). The vulnerable ventral tegmental area in Parkinson’s disease. Basal ganglia, 5(2), 51–55.Google Scholar
  2. Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.CrossRefGoogle Scholar
  3. Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9(1), 357–381.CrossRefGoogle Scholar
  4. Aravamuthan, B., Muthusamy, K., Stein, J., Aziz, T., & Johansen-Berg, H. (2007). Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage, 37(3), 694–705.CrossRefGoogle Scholar
  5. Basso, M. A., Powers, A. S., & Evinger, C. (1996). An explanation for reflex blink hyperexcitability in Parkinson’s disease. I. Superior colliculus. The Journal of Neuroscience, 16(22), 7308–7317.Google Scholar
  6. Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., et al. (2009). Sparse but selective and potent synaptic transmission from the globus pallidus to the subthalamic nucleus. Journal of Neurophysiology, 102(1), 532–545.CrossRefGoogle Scholar
  7. Baunez, C., Humby, T., Eagle, D. M., Ryan, L. J., Dunnett, S. B., & Robbins, T. W. (2001). Effects of STN lesions on simple vs choice reaction time tasks in the rat: preserved motor readiness, but impaired response selection. European Journal of Neuroscience, 13(8), 1609–1616.CrossRefGoogle Scholar
  8. Beaulieu, J. M., & Gainetdinov, R. R. (2011). The physiology, signaling, and pharmacology of dopamine receptors. Pharmacological Reviews, 63(1), 182–217.CrossRefGoogle Scholar
  9. Benazzouz, A., Breit, S., Koudsie, A., Pollak, P., Krack, P., & Benabid, A. L. (2002). Intraoperative microrecordings of the subthalamic nucleus in Parkinson’s disease. Movement Disorders, 17(S3), S145–S149.CrossRefGoogle Scholar
  10. Bennett, B. D., Callaway, J. C., & Wilson, C. J. (2000). Intrinsic membrane properties underlying spontaneous tonic firing in neostriatal cholinergic interneurons. The Journal of Neuroscience, 20(22), 8493–8503.Google Scholar
  11. Bergman, H., Feingold, A., Nini, A., Raz, A., Slovin, H., Abeles, M., & Vaadia, E. (1998). Physiological aspects of information processing in the basal ganglia of normal and Parkinsonian primates. Trends in Neurosciences, 21(1), 32–38.Google Scholar
  12. Bergman, H., Wichmann, T., Karmon, B., & DeLong, M. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of Parkinsonism. Journal of Neurophysiology, 72(2), 507–520.CrossRefGoogle Scholar
  13. Beurrier, C., Congar, P., Bioulac, B., & Hammond, C. (1999). Subthalamic nucleus neurons switch from single-spike activity to burst-firing mode. The Journal of Neuroscience, 19(2), 599–609.Google Scholar
  14. Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: Oscillations in the subthalamic nucleus–external globus pallidus network. Trends in Neurosciences, 25(10), 525–531.CrossRefGoogle Scholar
  15. Bevan, M. D., & Wilson, C. J. (1999). Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. The Journal of Neuroscience, 19(17), 7617–7628.Google Scholar
  16. Björklund, A., & Dunnett, S. B. (2007). Dopamine neuron systems in the brain: An update. Trends in Neurosciences, 30(5), 194–202.CrossRefGoogle Scholar
  17. Blandini, F. (2010). An update on the potential role of excitotoxicity in the pathogenesis of Parkinson’s disease. Functional Neurology, 25(2), 65.Google Scholar
  18. Bolam, J., Bergman, H., Graybiel, A., Kimura, M., Plenz, D., Seung, H., … Wickens, J. (2006). Microcircuits, molecules and motivated behaviour: Microcircuits in the striatum. Paper presented at the Microcircuits: The Interface Between Neurons and Global Brain Function, Dahlem Workshop Report.Google Scholar
  19. Brown, P. (2003). Oscillatory nature of human basal ganglia activity: relationship to the pathophysiology of Parkinson’s disease. Movement Disorders, 18(4), 357–363.CrossRefGoogle Scholar
  20. Brown, P. (2007). Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Current Opinion in Neurobiology, 17(6), 656–664.CrossRefGoogle Scholar
  21. Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. The Journal of Neuroscience, 21(3), 1033–1038.Google Scholar
  22. Chakravarthy, V., Joseph, D., & Bapi, R. S. (2010). What do the basal ganglia do? A modeling perspective. Biological Cybernetics, 103(3), 237–253.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Charpier, S., Beurrier, C., & Paz, J. (2010). The subthalamic nucleus: from in vitro to in vivo mechanisms. Handbook of Basal Ganglia Structure and Function, 259–273.Google Scholar
  24. Chaudhuri, K. R., Healy, D. G., & Schapira, A. H. (2006). Non-motor symptoms of Parkinson’s disease: diagnosis and management. The Lancet Neurology, 5(3), 235–245.CrossRefGoogle Scholar
  25. Chaudhuri, K. R., Odin, P., Antonini, A., & Martinez-Martin, P. (2011). Parkinson’s disease: The non-motor issues. Parkinsonism & Related Disorders, 17(10), 717–723.CrossRefGoogle Scholar
  26. Chersi, F., Mirolli, M., Pezzulo, G., & Baldassarre, G. (2013). A spiking neuron model of the cortico-basal ganglia circuits for goal-directed and habitual action learning. Neural Networks, 41, 212–224.CrossRefGoogle Scholar
  27. DeLong, M., & Wichmann, T. (2010). Changing views of basal ganglia circuits and circuit disorders. Clinical EEG and Neuroscience, 41(2), 61–67.CrossRefGoogle Scholar
  28. Deniau, J., Hammond, C., Riszk, A., & Feger, J. (1978). Electrophysiological properties of identified output neurons of the rat substantia nigra (pars compacta and pars reticulata): Evidences for the existence of branched neurons. Experimental Brain Research, 32(3), 409–422.CrossRefGoogle Scholar
  29. Fan, K. Y., Baufreton, J., Surmeier, D. J., Chan, C. S., & Bevan, M. D. (2012). Proliferation of external globus pallidus-subthalamic nucleus synapses following degeneration of midbrain dopamine neurons. The Journal of Neuroscience, 32(40), 13718–13728.CrossRefGoogle Scholar
  30. Foffani, G., Bianchi, A., Baselli, G., & Priori, A. (2005). Movement-related frequency modulation of beta oscillatory activity in the human subthalamic nucleus. The Journal of Physiology, 568(2), 699–711.CrossRefGoogle Scholar
  31. Gerfen, C. R. (1984). The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems. Nature, 311(5985), 461.Google Scholar
  32. Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F., & Sibley, D. R. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, 250(4986), 1429–1432.Google Scholar
  33. Gerfen, C. R., & Surmeier, D. J. (2011). Modulation of striatal projection systems by dopamine. Annual Review of Neuroscience, 34, 441.CrossRefGoogle Scholar
  34. Gerfen, C. R., & Young, W. S. (1988). Distribution of striatonigral and striatopallidal peptidergic neurons in both patch and matrix compartments: An in situ hybridization histochemistry and fluorescent retrograde tracing study. Brain Research, 460(1), 161–167.CrossRefGoogle Scholar
  35. Gillies, A., Willshaw, D., Gillies, A., & Willshaw, D. (1998). A massively connected subthalamic nucleus leads to the generation of widespread pulses. Proceedings of the Royal Society of London, Series B: Biological Sciences, 265(1410), 2101–2109.CrossRefGoogle Scholar
  36. Grace, A., & Bunney, B. (1983). Intracellular and extracellular electrophysiology of nigral dopaminergic neurons—2. Action potential generating mechanisms and morphological correlates. Neuroscience, 10(2), 317–331.CrossRefGoogle Scholar
  37. Graybiel, A. M., Aosaki, T., Flaherty, A. W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 265(5180), 1826–1831.CrossRefGoogle Scholar
  38. Gurney, K., Prescott, T. J., & Redgrave, P. (2001a). A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biological Cybernetics, 84(6), 401–410.CrossRefzbMATHGoogle Scholar
  39. Gurney, K., Prescott, T. J., & Redgrave, P. (2001b). A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biological Cybernetics, 84(6), 411–423.CrossRefzbMATHGoogle Scholar
  40. Haber, S. N., & Calzavara, R. (2009). The cortico-basal ganglia integrative network: The role of the thalamus. Brain Research Bulletin, 78(2), 69–74.CrossRefGoogle Scholar
  41. Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. The Journal of Neuroscience, 20(6), 2369–2382.Google Scholar
  42. Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: Networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.CrossRefGoogle Scholar
  43. Han, X., Jing, M.-y., Zhao, T.-y., Wu, N., Song, R., & Li, J. (2017). Role of dopamine projections from ventral tegmental area to nucleus accumbens and medial prefrontal cortex in reinforcement behaviors assessed using optogenetic manipulation. Metabolic Brain Disease, 1–12.Google Scholar
  44. Hasbi, A., O’Dowd, B. F., & George, S. R. (2011). Dopamine D1-D2 receptor heteromer signaling pathway in the brain: emerging physiological relevance. Molecular Brain, 4(1), 26.CrossRefGoogle Scholar
  45. Heida, T., Lakke, E. A., & Usunoff, K. G. (2008a). Subthalamic nucleus Part I: Development, cytology, topography and connections, the advances in anatomy, embryology and cell biology. Berlin: Springer.Google Scholar
  46. Heida, T., Marani, E., & Usunoff, K. G. (2008b). The subthalamic nucleus: Part II: Modelling and simulation of activity. Berlin: Springer.CrossRefGoogle Scholar
  47. Holgado, A. J. N., Terry, J. R., & Bogacz, R. (2010). Conditions for the generation of beta oscillations in the subthalamic nucleus–globus pallidus network. The Journal of Neuroscience, 30(37), 12340–12352.CrossRefGoogle Scholar
  48. Humphries, M., & Gurney, K. (2002). The role of intra-thalamic and thalamocortical circuits in action selection. Network: Computation in Neural Systems, 13(1), 131–156.CrossRefzbMATHGoogle Scholar
  49. Kawaguchi, Y. (1993). Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. The Journal of Neuroscience, 13(11), 4908–4923.Google Scholar
  50. Kita, H., Chang, H., & Kitai, S. (1983). The morphology of intracellularly labeled rat subthalamic neurons: A light microscopic analysis. Journal of Comparative Neurology, 215(3), 245–257.CrossRefGoogle Scholar
  51. Kita, H., & Kita, S. (1994). The morphology of globus pallidus projection neurons in the rat: An intracellular staining study. Brain Research, 636(2), 308–319.CrossRefGoogle Scholar
  52. Knable, M. B., & Weinberger, D. R. (1997). Dopamine, the prefrontal cortex and schizophrenia. Journal of psychopharmacology, 11(2), 123–131.Google Scholar
  53. Koós, T., & Tepper, J. M. (1999). Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature Neuroscience, 2(5), 467–472.CrossRefGoogle Scholar
  54. Kreitzer, A. C. (2009). Physiology and pharmacology of striatal neurons. Annual Review of Neuroscience, 32, 127–147.CrossRefGoogle Scholar
  55. Lawson, R., Seymour, B., Nord, C., Thomas, D., Roiser, J., Dayan, P., & Pilling, S. (2016). Disrupted habenula function in major depression. Molecular psychiatry, 22(2), 202.Google Scholar
  56. Lee, C. R., & Tepper, J. M. (2009). Basal ganglia control of substantia nigra dopaminergic neurons. In Birth, life and death of dopaminergic neurons in the substantia nigra (pp. 71–90), Berlin: Springer.Google Scholar
  57. Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in Parkinson’s disease. Brain, 125(6), 1196–1209.CrossRefGoogle Scholar
  58. Mallet, N., Le Moine, C., Charpier, S., & Gonon, F. (2005). Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. The Journal of Neuroscience, 25(15), 3857–3869.CrossRefGoogle Scholar
  59. Marsden, C. (1986). Movement disorders and the basal ganglia. Trends in neurosciences, 9, 512–515.Google Scholar
  60. Maurice, N., Deniau, J.-M., Glowinski, J., & Thierry, A.-M. (1998). Relationships between the prefrontal cortex and the basal ganglia in the rat: physiology of the corticosubthalamic circuits. The Journal of Neuroscience, 18(22), 9539–9546.Google Scholar
  61. Merello, M. (2007). Non-motor disorders in Parkinson’s disease. Revista de neurologia, 47(5), 261–270.Google Scholar
  62. Middleton, F. A., & Strick, P. L. (1996). The temporal lobe is a target of output from the basal ganglia. Proceedings of the national academy of sciences, 93(16), 8683–8687.Google Scholar
  63. Morales, M., & Margolis, E. B. (2017). Ventral tegmental area: cellular heterogeneity, connectivity and behaviour. Nature Reviews Neuroscience, 18(2), 73–85.Google Scholar
  64. Nakanishi, H., Kita, H., & Kitai, S. (1987). Intracellular study of rat substantia nigra pars reticulata neurons in an in vitro slice preparation: Electrical membrane properties and response characteristics to subthalamic stimulation. Brain Research, 437(1), 45–55.CrossRefGoogle Scholar
  65. Nakano, K. (2000). Neural circuits and topographic organization of the basal ganglia and related regions. Brain and Development, 22, 5–16.CrossRefGoogle Scholar
  66. Nambu, A., Tokuno, H., & Takada, M. (2002). Functional significance of the cortico–subthalamo–pallidal ‘hyperdirect’ pathway. Neuroscience Research, 43(2), 111–117.CrossRefGoogle Scholar
  67. Nicola, S. M., Surmeier, D. J., & Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annual Review of Neuroscience, 23(1), 185–215.CrossRefGoogle Scholar
  68. Oliva, I., & Wanat, M. J. (2016). Ventral tegmental area afferents and drug-dependent behaviors. Frontiers in psychiatry, 7.Google Scholar
  69. Park, C., Worth, R. M., & Rubchinsky, L. L. (2010). Fine temporal structure of beta oscillations synchronization in subthalamic nucleus in Parkinson’s disease. Journal of Neurophysiology, 103(5), 2707–2716.CrossRefGoogle Scholar
  70. Park, C., Worth, R. M., & Rubchinsky, L. L. (2011). Neural dynamics in Parkinsonian brain: The boundary between synchronized and nonsynchronized dynamics. Physical Review E, 83(4), 042901.CrossRefGoogle Scholar
  71. Plenz, D., & Kitai, S. T. (1998). Up and down states in striatal medium spiny neurons simultaneously recorded with spontaneous activity in fast-spiking interneurons studied in cortex–striatum–substantia nigra organotypic cultures. The Journal of Neuroscience, 18(1), 266–283.Google Scholar
  72. Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400(6745), 677–682.CrossRefGoogle Scholar
  73. Rashid, A. J., So, C. H., Kong, M. M., Furtak, T., El-Ghundi, M., Cheng, R., … George, S. R. (2007). D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proceedings of the National Academy of Sciences, 104(2), 654–659.Google Scholar
  74. Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of Parkinsonism. The Journal of Neuroscience, 20(22), 8559–8571.Google Scholar
  75. Reig, R., & Silberberg, G. (2014). Multisensory integration in the mouse striatum. Neuron, 83(5), 1200–1212.CrossRefGoogle Scholar
  76. Robledo, P., & Féger, J. (1990). Excitatory influence of rat subthalamic nucleus to substantia nigra pars reticulata and the pallidal complex: Electrophysiological data. Brain Research, 518(1), 47–54.CrossRefGoogle Scholar
  77. Rodriguez-Oroz, M. C., López-Azcárate, J., Garcia-Garcia, D., Alegre, M., Toledo, J., Valencia, M., … Obeso, J. A. (2010). Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson’s disease. Brain, awq301.Google Scholar
  78. Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.CrossRefGoogle Scholar
  79. Sato, F., Lavallée, P., Lévesque, M., & Parent, A. (2000). Single-axon tracing study of neurons of the external segment of the globus pallidus in primate. Journal of Comparative Neurology, 417(1), 17–31.CrossRefGoogle Scholar
  80. Schrag, A., & Quinn, N. (2000). Dyskinesias and motor fluctuations in Parkinson’s disease. Brain, 123(11), 2297–2305.CrossRefGoogle Scholar
  81. Schroll, H., Vitay, J., & Hamker, F. H. (2012). Working memory and response selection: A computational account of interactions among cortico-basalganglio-thalamic loops. Neural Networks, 26, 59–74.CrossRefGoogle Scholar
  82. Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of neurophysiology, 80(1), 1–27.Google Scholar
  83. Seeman, P. (1980). Brain dopamine receptors. Pharmacological Reviews, 32(3), 229–313.Google Scholar
  84. Singleton, A., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., … Nussbaum, R. (2003). α-Synuclein locus triplication causes Parkinson’s disease. Science, 302(5646), 841–841.Google Scholar
  85. Stamatakis, A. M., Jennings, J. H., Ung, R. L., Blair, G. A., Weinberg, R. J., Neve, R. L., … Deisseroth, K. (2013). A unique population of ventral tegmental area neurons inhibits the lateral habenula to promote reward. Neuron, 80(4), 1039–1053.Google Scholar
  86. Steiner, H., & Tseng, K. Y. (2010). Handbook of Basal Ganglia Structure and Function: A Decade of Progress (Vol. 20), Access Online via Elsevier.Google Scholar
  87. Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30(5), 228–235.CrossRefGoogle Scholar
  88. Surmeier, D. J., Song, W.-J., & Yan, Z. (1996). Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. The Journal of Neuroscience, 16(20), 6579–6591.Google Scholar
  89. Swanson, L. (1982). The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain research bulletin, 9(1), 321–353.Google Scholar
  90. Tachibana, Y., Iwamuro, H., Kita, H., Takada, M., & Nambu, A. (2011). Subthalamo-pallidal interactions underlying Parkinsonian neuronal oscillations in the primate basal ganglia. European Journal of Neuroscience, 34(9), 1470–1484.CrossRefGoogle Scholar
  91. Tepper, J., Martin, L., & Anderson, D. (1995). GABA~A Receptor-Mediated Inhibition of Rat Substantia Nigra Dopaminergic Neurons by Pars Reticulata Projection Neurons. Journal of Neuroscience, 15(4), 3092–3103.Google Scholar
  92. Weinberger, M., & Dostrovsky, J. O. (2011). A basis for the pathological oscillations in basal ganglia: the crucial role of dopamine. NeuroReport, 22(4), 151.CrossRefGoogle Scholar
  93. Willshaw, D., & Li, Z. (2002). Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Royal Society of London, Series B: Biological Sciences, 269(1491), 545–551.CrossRefGoogle Scholar
  94. Wilson, C. J., & Bevan, M. D. (2011). Intrinsic dynamics and synaptic inputs control the activity patterns of subthalamic nucleus neurons in health and in Parkinson’s disease. Neuroscience, 198, 54–68.CrossRefGoogle Scholar
  95. Wood-Kaczmar, A., Gandhi, S., & Wood, N. (2006). Understanding the molecular causes of Parkinson’s disease. Trends in Molecular Medicine, 12(11), 521–528.CrossRefGoogle Scholar
  96. Xia, R., & Mao, Z.-H. (2012). Progression of motor symptoms in Parkinson’s disease. Neuroscience Bulletin, 28(1), 39–48.CrossRefGoogle Scholar
  97. Yelnik, J. (2002). Functional anatomy of the basal ganglia. Movement Disorders, 17(S3), S15–S21.CrossRefGoogle Scholar
  98. Yamaguchi, T., Wang, H.-L., Li, X., Ng, T. H., & Morales, M. (2011). Mesocorticolimbic glutamatergic pathway. Journal of Neuroscience, 31(23), 8476–8490.Google Scholar
  99. Yucelgen, C., Denizdurduran, B., Metin, S., Elibol, R., & Sengor, N. S. (2012). A biophysical network model displaying the role of basal ganglia pathways in action selection. In Artificial neural networks and machine learning–ICANN 2012 (pp. 177–184), Berlin: Springer.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Alekhya Mandali
    • 1
  • V. Srinivasa Chakravarthy
    • 2
  • Ahmed A. Moustafa
    • 3
  1. 1.Department of Psychiatry, School of Clinical MedicineUniversity of CambridgeCambridgeUK
  2. 2.Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology, MadrasChennaiIndia
  3. 3.School of Social Sciences and Psychology & Marcs Institute for Brain and BehaviourWestern Sydney UniversitySydneyAustralia

Personalised recommendations