Advertisement

The Basal Ganglia: Summary and Future Modeling Research

  • V. Srinivasa Chakravarthy
  • Ahmed A. Moustafa
Chapter
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

The pivotal idea of the Go-Explore-NoGo (GEN) approach to BG modeling, expounded in this book, is the hypothesis that the complex dynamics of the STN–GPe loop can introduce certain randomness in the action selection mechanisms that occur downstream in other BG areas as well as the cortex, thalamus, and other subcortical structures. The indirect pathway, that consists of the STN–GPe loop, in addition to its classical role as a source of movement inhibition, also serves as a source of randomness, and therefore, in the jargon of reinforcement learning, can control the levels of exploration in action selection. In this chapter, we summarize how the Go-Explore-NoGo approach can account for several functions of the basal ganglia. We also provide a few ideas on how to use the Go-Explore-NoGo approach to simulate behavioral performance in other basal ganglia-related functions (e.g., attention, working memory, episodic memory) and disorders (e.g., schizophrenia).

References

  1. Allott, R. (1992). Language origin: A multidisciplinary approach. In J. Wind (Ed.), (pp. 105–119). Dordrecht: Kluwer.Google Scholar
  2. Anderson, M. C., & Green, C. (2001). Suppressing unwanted memories by executive control. Nature, 410(6826), 366–369.  https://doi.org/10.1038/35066572.CrossRefGoogle Scholar
  3. Aradi, I., & Érdi, P. (2006). Computational neuropharmacology: Dynamical approaches in drug discovery. Trends in Pharmacological Sciences, 27(5), 240–243.CrossRefGoogle Scholar
  4. Balasubramani, P. P., & Chakravarthy, S. (2017). Bipolar oscillations between positive and negative mood states in a computational model of Basal Ganglia. bioRxiv, 205310.Google Scholar
  5. Benoit, R. G., & Anderson, M. C. (2012). Opposing mechanisms support the voluntary forgetting of unwanted memories. Neuron, 76(2), 450–460.  https://doi.org/10.1016/j.neuron.2012.07.025.CrossRefGoogle Scholar
  6. Bergman, A., O’Brien, J., Osgood, G., & Cornblatt, B. (1995). Distractibility in schizophrenia. Psychiatry Research, 57(2), 131–140.CrossRefGoogle Scholar
  7. Bourdaud, N., Chavarriaga, R., Galán, F., & del R Millan, J. (2008). Characterizing the EEG correlates of exploratory behavior. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(6), 549–556.Google Scholar
  8. Daw, N. D., O’Doherty, J. P., Dayan, P., Seymour, B., & Dolan, R. J. (2006). Cortical substrates for exploratory decisions in humans. Nature, 441(7095), 876–879.CrossRefGoogle Scholar
  9. Depue, B. E., Curran, T., & Banich, M. T. (2007). Prefrontal regions orchestrate suppression of emotional memories via a two-phase process. Science, 317(5835), 215–219.  https://doi.org/10.1126/science.1139560.CrossRefGoogle Scholar
  10. Devan, B. D., & White, N. M. (1999). Parallel information processing in the dorsal striatum: Relation to hippocampal function. Journal of Neuroscience, 19(7), 2789–2798.Google Scholar
  11. Dominey, P. F., & Arbib, M. A. (1992). A cortico-subcortical model for generation of spatially accurate sequential saccades. Cerebral Cortex, 2(2), 153–175.CrossRefGoogle Scholar
  12. Fellows, Noth, J., & Schwarz, M. (1998). Precision grip and Parkinson’s disease. Brain, 121(9), 1771–1784.  https://doi.org/10.1093/brain/121.9.1771.
  13. Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007). Hold your horses: Impulsivity, deep brain stimulation, and medication in Parkinsonism. Science, 318(5854), 1309–1312.CrossRefGoogle Scholar
  14. Frank, M. J., Seeberger, L. C., & O’reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science, 306(5703), 1940–1943.CrossRefGoogle Scholar
  15. Gillies, A., Willshaw, D., & Li, Z. (2002). Subthalamic-pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Royal Society of London B: Biological Sciences, 269(1491), 545–551.  https://doi.org/10.1098/rspb.2001.1817.CrossRefGoogle Scholar
  16. Harel, B., Cannizzaro, M., & Snyder, P. J. (2004). Variability in fundamental frequency during speech in prodromal and incipient Parkinson’s disease: A longitudinal case study. Brain and Cognition, 56(1), 24–29.CrossRefGoogle Scholar
  17. Hazy, T. E., Frank, M. J., & O’Reilly R, C. (2007). Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. Google Scholar
  18. Ingvarsson, P. E., Gordon, A. M., & Forssberg, H. (1997). Coordination of manipulative forces in Parkinson’s disease. Experimental Neurology, 145(2), 489–501.CrossRefGoogle Scholar
  19. Isoda, M., & Hikosaka, O. (2008). Role for subthalamic nucleus neurons in switching from automatic to controlled eye movement. The Journal of Neuroscience, 28(28), 7209–7218.  https://doi.org/10.1523/jneurosci.0487-08.200828/28/7209. [pii].CrossRefGoogle Scholar
  20. Joel, D., Niv, Y., & Ruppin, E. (2002). Actor–critic models of the basal ganglia: New anatomical and computational perspectives. Neural Networks, 15(4), 535–547.CrossRefGoogle Scholar
  21. Jorgensen, W. L. (2004). The many roles of computation in drug discovery. Science, 303(5665), 1813–1818.CrossRefGoogle Scholar
  22. Kirkpatrick, S., Gelatt, C. D., Jr., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.  https://doi.org/10.1126/science.220.4598.671.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Kori, A., Miyashita, N., Kato, M., Hikosaka, O., Usui, S., & Matsumura, M. (1995). Eye movements in monkeys with local dopamine depletion in the caudate nucleus. II. Deficits in voluntary saccades. Journal of Neuroscience, 15(1), 928–941.Google Scholar
  24. Krishnan, R., Ratnadurai, S., Subramanian, D., Chakravarthy, V. S., & Rengaswamy, M. (2011). Modeling the role of basal ganglia in saccade generation: Is the indirect pathway the explorer? Neural Networks, 24(8), 801–813.CrossRefGoogle Scholar
  25. LaBar, K. S., Gitelman, D. R., Parrish, T. B., & Mesulam, M. (1999). Neuroanatomic overlap of working memory and spatial attention networks: A functional MRI comparison within subjects. Neuroimage, 10(6), 695–704.  https://doi.org/10.1006/nimg.1999.0503.CrossRefGoogle Scholar
  26. Levy, B. J., & Anderson, M. C. (2008). Individual differences in the suppression of unwanted memories: The executive deficit hypothesis. Acta Psychologica (Amst), 127(3), 623–635.  https://doi.org/10.1016/j.actpsy.2007.12.004.CrossRefGoogle Scholar
  27. Mandali, A., & Chakravarthy, V. S. (2016). Probing the Role of Medication, DBS Electrode Position, and Antidromic Activation on Impulsivity Using a Computational Model of Basal Ganglia. Frontiers in Human Neuroscience, 10. Google Scholar
  28. Mandali, A., Chakravarthy, V. S., Rajan, R., Sarma, S., & Kishore, A. (2016). Electrode position and current amplitude modulate impulsivity after subthalamic stimulation in Parkinsons disease—A computational study. Frontiers in Physiology, 7. Google Scholar
  29. Mandali, A., Rengaswamy, M., Chakravarthy, S., & Moustafa, A. A. (2015). A spiking basal ganglia model of synchrony, exploration and decision making. Frontiers in Neuroscience, 9, 191.CrossRefGoogle Scholar
  30. Mayer, J. S., Bittner, R. A., Nikolic, D., Bledowski, C., Goebel, R., & Linden, D. E. (2007). Common neural substrates for visual working memory and attention. Neuroimage, 36(2), 441–453.  https://doi.org/10.1016/j.neuroimage.2007.03.007.CrossRefGoogle Scholar
  31. Mehler-Wex, C., Riederer, P., & Gerlach, M. (2006). Dopaminergic dysbalance in distinct basal ganglia neurocircuits: Implications for the pathophysiology of Parkinson’s disease, schizophrenia and attention deficit hyperactivity disorder. Neurotoxicity Research, 10(3–4), 167–179.CrossRefGoogle Scholar
  32. Miyoshi, E., Wietzikoski, S., Camplessei, M., Silveira, R., Takahashi, R. N., & Da Cunha, C. (2002). Impaired learning in a spatial working memory version and in a cued version of the water maze in rats with MPTP-induced mesencephalic dopaminergic lesions. Brain Research Bulletin, 58(1), 41–47.CrossRefGoogle Scholar
  33. Morris, R., Griffiths, O., Le Pelley, M. E., & Weickert, T. W. (2013). Attention to irrelevant cues is related to positive symptoms in schizophrenia. Schizophrenia Bulletin, 39(3), 575–582.  https://doi.org/10.1093/schbul/sbr192.CrossRefGoogle Scholar
  34. Moustafa, A. A. (2015). On and off switches in the brain. Frontiers in Behavioral Neuroscience, 9, 114.  https://doi.org/10.3389/fnbeh.2015.00114.Google Scholar
  35. Ondo, W. G., & Lai, D. (2008). Predictors of impulsivity and reward seeking behavior with dopamine agonists. Parkinsonism & Related Disorders, 14(1), 28–32.CrossRefGoogle Scholar
  36. Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25, 563–593.CrossRefGoogle Scholar
  37. Pankow, A., Katthagen, T., Diner, S., Deserno, L., Boehme, R., Kathmann, N., … Schlagenhauf, F. (2016). Aberrant salience is related to dysfunctional self-referential processing in psychosis. Schizophrenia Bulletin, 42(1), 67–76.  https://doi.org/10.1093/schbul/sbv098.
  38. Pinto, S., Ozsancak, C., Tripoliti, E., Thobois, S., Limousin-Dowsey, P., & Auzou, P. (2004). Treatments for dysarthria in Parkinson’s disease. Lancet Neurol, 3(9), 547–556.  https://doi.org/10.1016/s1474-4422(04)00854-3S1474442204008543. [pii].CrossRefGoogle Scholar
  39. Rochefort, C., Lefort, J. M., & Rondi-Reig, L. (2013). The cerebellum: A new key structure in the navigation system. Front Neural Circuits, 7, 35.  https://doi.org/10.3389/fncir.2013.00035.CrossRefGoogle Scholar
  40. Sukumar, D., Rengaswamy, M., & Chakravarthy, V. S. (2012). Modeling the contributions of basal ganglia and hippocampus to spatial navigation using reinforcement learning. PLoS ONE, 7(10), e47467.CrossRefGoogle Scholar
  41. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning : An introduction. Cambridge, MA: MIT Press.Google Scholar
  42. Voon, V., Thomsen, T., Miyasaki, J. M., de Souza, M., Shafro, A., Fox, S. H., et al. (2007). Factors associated with dopaminergic drug–related pathological gambling in Parkinson disease. Archives of Neurology, 64(2), 212–216.CrossRefGoogle Scholar
  43. Weinberger, M., Hutchison, W. D., Lozano, A. M., Hodaie, M., & Dostrovsky, J. O. (2009). Increased gamma oscillatory activity in the subthalamic nucleus during tremor in Parkinson’s disease patients. Journal of Neurophysiology, 101(2), 789–802.CrossRefGoogle Scholar
  44. Willshaw, D., & Li, Z. (2002). Subthalamic–pallidal interactions are critical in determining normal and abnormal functioning of the basal ganglia. Proceedings of the Royal Society of London, Series B: Biological Sciences, 269(1491), 545–551.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • V. Srinivasa Chakravarthy
    • 1
  • Ahmed A. Moustafa
    • 2
    • 3
  1. 1.Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology, MadrasChennaiIndia
  2. 2.School of Social Sciences and Psychology & Marcs Institute for Brain and BehaviourWestern Sydney UniversitySydneyAustralia
  3. 3.Marcs Institute for Brain and BehaviourWestern Sydney UniversitySydneyAustralia

Personalised recommendations