Skip to main content

Modeling Serotonin’s Contributions to Basal Ganglia Dynamics in Parkinson’s Disease with Impulse Control Disorders

  • Chapter
  • First Online:
Computational Neuroscience Models of the Basal Ganglia

Abstract

Impulsivity involves irresistibility in execution of actions and is prominent in medication condition of Parkinson’s disease (PD) patients. In this chapter, we model a probabilistic reversal learning task in PD patients with and without impulse control disorder (ICD) to understand the basis of their neural circuitry responsible for displaying ICD in PD condition. The proposed model is of the basal ganglia (BG) action selection dynamics, and it predicts the dysfunction of both dopaminergic (DA) and serotonergic (5HT) neuromodulator systems to account for the experimental results. Furthermore, the BG is modeled after utility function framework with DA controlling reward prediction and 5HT controlling the loss and risk prediction, respectively. The striatal model has three pools of medium spiny neurons (MSNs) including those with D1 receptor (R) alone, D2R alone, and co-expressing D1R–D2R neurons. Some significant results modeled are increased reward sensitivity during ON medication and an increased punishment sensitivity during OFF medication in patients. The lower reaction times (RT) in ICD subjects compared to that of the non-ICD category of the PD ON patients are also explained. Other modeling predictions include a significant decrease in the sensitivity to loss and risk in the ICD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahlskog, J. E. (2010). Think before you leap Donepezil reduces falls? Neurology, 75(14), 1226–1227.

    Article  Google Scholar 

  • Averbeck, B., O’Sullivan, S., & Djamshidian, A. (2014). Impulsive and compulsive behaviors in Parkinson’s disease. Annual Review of Clinical Psychology, 10, 553–580.

    Article  Google Scholar 

  • Balasubramani, P. P., Chakravarthy, V. S., Ali, M., Ravindran, B., & Moustafa, A. A. (2015). Identifying the basal ganglia network model markers for medication-induced impulsivity in Parkinson’s disease patients. PLoS ONE, 10(6), e0127542.

    Article  Google Scholar 

  • Bedard, C., Wallman, M. J., Pourcher, E., Gould, P. V., Parent, A., & Parent, M. (2011). Serotonin and dopamine striatal innervation in Parkinson’s disease and Huntington’s chorea. Parkinsonism and Related Disorders, 17(8), 593–598. https://doi.org/10.1016/j.parkreldis.2011.05.012.

    Article  Google Scholar 

  • Bodi, N., Keri, S., Nagy, H., Moustafa, A., Myers, C. E., Daw, N., … Gluck, M. A. (2009). Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain, 132(Pt 9), 2385–2395. https://doi.org/10.1093/brain/awp094.

  • Bugalho, P., & Oliveira-Maia, A. J. (2013). Impulse control disorders in Parkinson’s disease: Crossroads between neurology, psychiatry and neuroscience. Behavioural Neurology, 27(4), 547–557.

    Article  Google Scholar 

  • Dalley, J. W., Everitt, B. J., & Robbins, T. W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron, 69(4), 680–694.

    Article  Google Scholar 

  • Dalley, J. W., Mar, A. C., Economidou, D., & Robbins, T. W. (2008). Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry. Pharmacology, Biochemistry and Behavior, 90(2), 250–260.

    Article  Google Scholar 

  • Djamshidian, A., Averbeck, B. B., Lees, A. J., & O’Sullivan, S. S. (2011). Clinical aspects of impulsive compulsive behaviours in Parkinson’s disease. Journal of the Neurological Sciences, 310(1), 183–188.

    Article  Google Scholar 

  • Dougherty, D. M., Mathias, C. W., Marsh, D. M., & Jagar, A. A. (2005). Laboratory behavioral measures of impulsivity. Behavior Research Methods, 37(1), 82–90.

    Article  Google Scholar 

  • Doya, K. (2002). Metalearning and neuromodulation. Neural Network, 15(4–6), 495–506.

    Google Scholar 

  • Evans, A. H., Pavese, N., Lawrence, A. D., Tai, Y. F., Appel, S., Doder, M., … Piccini, P. (2006). Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Annals of Neurology, 59(5), 852–858.

    Google Scholar 

  • Evenden, J. L. (1999). Varieties of impulsivity. Psychopharmacology (Berl), 146(4), 348–361.

    Article  Google Scholar 

  • Fahn, S., Libsch, L. R., & Cutler, R. W. (1971). Monoamines in the human neostriatum: Topographic distribution in normals and in Parkinson’s disease and their role in akinesia, rigidity, chorea, and tremor. Journal of the Neurological Sciences, 14(4), 427–455.

    Article  Google Scholar 

  • Fahn, S., Snider, S., Prasad, A. L., Lane, E., & Makadon, H. (1975). Normalization of brain serotonin by L-tryptophan in levodopa-treated rats. Neurology, 25(9), 861–865.

    Article  Google Scholar 

  • Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17(1), 51–72. https://doi.org/10.1162/0898929052880093.

    Article  Google Scholar 

  • Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007a). Hold your horses: Impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318(5854), 1309–1312. https://doi.org/10.1126/science.1146157.

    Article  Google Scholar 

  • Frank, M. J., Scheres, A., & Sherman, S. J. (2007b). Understanding decision-making deficits in neurological conditions: Insights from models of natural action selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 1641–1654.

    Article  Google Scholar 

  • Halliday, G. M., Blumbergs, P. C., Cotton, R. G., Blessing, W. W., & Geffen, L. B. (1990). Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Research, 510(1), 104–107.

    Article  Google Scholar 

  • Nombela, C., Rittman, T., Robbins, T. W., & Rowe, J. B. (2014). Multiple modes of impulsivity in Parkinson’s disease. PLoS ONE, 9(1), e85747.

    Article  Google Scholar 

  • Piray, P., Zeighami, Y., Bahrami, F., Eissa, A. M., Hewedi, D. H., & Moustafa, A. A. (2014). Impulse control disorders in Parkinson’s disease are associated with dysfunction in stimulus valuation but not action valuation. The Journal of Neuroscience, 34(23), 7814–7824.

    Article  Google Scholar 

  • Ray, N., Antonelli, F., & Strafella, A. P. (2011). Imaging impulsivity in Parkinson’s disease and the contribution of the subthalamic nucleus. Parkinson’s Dis. 2011:594860. doi: 10.4061/2011/594860.

  • Reed, M. C., Nijhout, H. F., & Best, J. A. (2012). Mathematical insights into the effects of levodopa. Frontiers in integrative neuroscience, 6, 21. doi: 10.3389/fnint.2012.00021

  • Steeves, T., Miyasaki, J., Zurowski, M., Lang, A., Pellecchia, G., Van Eimeren, T., … Strafella, A. (2009). Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain, 132(5), 1376–1385.

    Google Scholar 

  • Tan, A., Salgado, M., & Fahn, S. (1996). Rapid eye movement sleep behavior disorder preceding Parkinson’s disease with therapeutic response to levodopa. Movement Disorders, 11(2), 214–216.

    Article  Google Scholar 

  • Tanaka, S. C., Schweighofer, N., Asahi, S., Shishida, K., Okamoto, Y., Yamawaki, S., et al. (2007). Serotonin differentially regulates short- and long-term prediction of rewards in the ventral and dorsal striatum. PLoS ONE, 2(12), e1333. https://doi.org/10.1371/journal.pone.0001333.

  • Wylie, S. A., Ridderinkhof, K. R., Bashore, T. R., & van den Wildenberg, W. P. (2010). The effect of Parkinson’s disease on the dynamics of on-line and proactive cognitive control during action selection. Journal of Cognitive Neuroscience, 22(9), 2058–2073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Srinivasa Chakravarthy .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balasubramani, P.P., Srinivasa Chakravarthy, V., Ravindran, B., Moustafa, A.A. (2018). Modeling Serotonin’s Contributions to Basal Ganglia Dynamics in Parkinson’s Disease with Impulse Control Disorders. In: Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8494-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8494-2_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8493-5

  • Online ISBN: 978-981-10-8494-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics