Advertisement

Modeling Serotonin’s Contributions to Basal Ganglia Dynamics in Parkinson’s Disease with Impulse Control Disorders

  • Pragathi Priyadharsini Balasubramani
  • V. Srinivasa Chakravarthy
  • Balaraman Ravindran
  • Ahmed A. Moustafa
Chapter
Part of the Cognitive Science and Technology book series (CSAT)

Abstract

Impulsivity involves irresistibility in execution of actions and is prominent in medication condition of Parkinson’s disease (PD) patients. In this chapter, we model a probabilistic reversal learning task in PD patients with and without impulse control disorder (ICD) to understand the basis of their neural circuitry responsible for displaying ICD in PD condition. The proposed model is of the basal ganglia (BG) action selection dynamics, and it predicts the dysfunction of both dopaminergic (DA) and serotonergic (5HT) neuromodulator systems to account for the experimental results. Furthermore, the BG is modeled after utility function framework with DA controlling reward prediction and 5HT controlling the loss and risk prediction, respectively. The striatal model has three pools of medium spiny neurons (MSNs) including those with D1 receptor (R) alone, D2R alone, and co-expressing D1R–D2R neurons. Some significant results modeled are increased reward sensitivity during ON medication and an increased punishment sensitivity during OFF medication in patients. The lower reaction times (RT) in ICD subjects compared to that of the non-ICD category of the PD ON patients are also explained. Other modeling predictions include a significant decrease in the sensitivity to loss and risk in the ICD patients.

References

  1. Ahlskog, J. E. (2010). Think before you leap Donepezil reduces falls? Neurology, 75(14), 1226–1227.CrossRefGoogle Scholar
  2. Averbeck, B., O’Sullivan, S., & Djamshidian, A. (2014). Impulsive and compulsive behaviors in Parkinson’s disease. Annual Review of Clinical Psychology, 10, 553–580.CrossRefGoogle Scholar
  3. Balasubramani, P. P., Chakravarthy, V. S., Ali, M., Ravindran, B., & Moustafa, A. A. (2015). Identifying the basal ganglia network model markers for medication-induced impulsivity in Parkinson’s disease patients. PLoS ONE, 10(6), e0127542.CrossRefGoogle Scholar
  4. Bedard, C., Wallman, M. J., Pourcher, E., Gould, P. V., Parent, A., & Parent, M. (2011). Serotonin and dopamine striatal innervation in Parkinson’s disease and Huntington’s chorea. Parkinsonism and Related Disorders, 17(8), 593–598.  https://doi.org/10.1016/j.parkreldis.2011.05.012.CrossRefGoogle Scholar
  5. Bodi, N., Keri, S., Nagy, H., Moustafa, A., Myers, C. E., Daw, N., … Gluck, M. A. (2009). Reward-learning and the novelty-seeking personality: a between- and within-subjects study of the effects of dopamine agonists on young Parkinson’s patients. Brain, 132(Pt 9), 2385–2395.  https://doi.org/10.1093/brain/awp094.
  6. Bugalho, P., & Oliveira-Maia, A. J. (2013). Impulse control disorders in Parkinson’s disease: Crossroads between neurology, psychiatry and neuroscience. Behavioural Neurology, 27(4), 547–557.CrossRefGoogle Scholar
  7. Dalley, J. W., Everitt, B. J., & Robbins, T. W. (2011). Impulsivity, compulsivity, and top-down cognitive control. Neuron, 69(4), 680–694.CrossRefGoogle Scholar
  8. Dalley, J. W., Mar, A. C., Economidou, D., & Robbins, T. W. (2008). Neurobehavioral mechanisms of impulsivity: Fronto-striatal systems and functional neurochemistry. Pharmacology, Biochemistry and Behavior, 90(2), 250–260.CrossRefGoogle Scholar
  9. Djamshidian, A., Averbeck, B. B., Lees, A. J., & O’Sullivan, S. S. (2011). Clinical aspects of impulsive compulsive behaviours in Parkinson’s disease. Journal of the Neurological Sciences, 310(1), 183–188.CrossRefGoogle Scholar
  10. Dougherty, D. M., Mathias, C. W., Marsh, D. M., & Jagar, A. A. (2005). Laboratory behavioral measures of impulsivity. Behavior Research Methods, 37(1), 82–90.CrossRefGoogle Scholar
  11. Doya, K. (2002). Metalearning and neuromodulation. Neural Network, 15(4–6), 495–506.Google Scholar
  12. Evans, A. H., Pavese, N., Lawrence, A. D., Tai, Y. F., Appel, S., Doder, M., … Piccini, P. (2006). Compulsive drug use linked to sensitized ventral striatal dopamine transmission. Annals of Neurology, 59(5), 852–858.Google Scholar
  13. Evenden, J. L. (1999). Varieties of impulsivity. Psychopharmacology (Berl), 146(4), 348–361.CrossRefGoogle Scholar
  14. Fahn, S., Libsch, L. R., & Cutler, R. W. (1971). Monoamines in the human neostriatum: Topographic distribution in normals and in Parkinson’s disease and their role in akinesia, rigidity, chorea, and tremor. Journal of the Neurological Sciences, 14(4), 427–455.CrossRefGoogle Scholar
  15. Fahn, S., Snider, S., Prasad, A. L., Lane, E., & Makadon, H. (1975). Normalization of brain serotonin by L-tryptophan in levodopa-treated rats. Neurology, 25(9), 861–865.CrossRefGoogle Scholar
  16. Frank, M. J. (2005). Dynamic dopamine modulation in the basal ganglia: A neurocomputational account of cognitive deficits in medicated and nonmedicated Parkinsonism. Journal of Cognitive Neuroscience, 17(1), 51–72.  https://doi.org/10.1162/0898929052880093.CrossRefGoogle Scholar
  17. Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007a). Hold your horses: Impulsivity, deep brain stimulation, and medication in parkinsonism. Science, 318(5854), 1309–1312.  https://doi.org/10.1126/science.1146157.CrossRefGoogle Scholar
  18. Frank, M. J., Scheres, A., & Sherman, S. J. (2007b). Understanding decision-making deficits in neurological conditions: Insights from models of natural action selection. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1485), 1641–1654.CrossRefGoogle Scholar
  19. Halliday, G. M., Blumbergs, P. C., Cotton, R. G., Blessing, W. W., & Geffen, L. B. (1990). Loss of brainstem serotonin- and substance P-containing neurons in Parkinson’s disease. Brain Research, 510(1), 104–107.CrossRefGoogle Scholar
  20. Nombela, C., Rittman, T., Robbins, T. W., & Rowe, J. B. (2014). Multiple modes of impulsivity in Parkinson’s disease. PLoS ONE, 9(1), e85747.CrossRefGoogle Scholar
  21. Piray, P., Zeighami, Y., Bahrami, F., Eissa, A. M., Hewedi, D. H., & Moustafa, A. A. (2014). Impulse control disorders in Parkinson’s disease are associated with dysfunction in stimulus valuation but not action valuation. The Journal of Neuroscience, 34(23), 7814–7824.CrossRefGoogle Scholar
  22. Ray, N., Antonelli, F., & Strafella, A. P. (2011). Imaging impulsivity in Parkinson’s disease and the contribution of the subthalamic nucleus. Parkinson’s Dis. 2011:594860. doi:  10.4061/2011/594860.
  23. Reed, M. C., Nijhout, H. F., & Best, J. A. (2012). Mathematical insights into the effects of levodopa. Frontiers in integrative neuroscience, 6, 21. doi:  10.3389/fnint.2012.00021
  24. Steeves, T., Miyasaki, J., Zurowski, M., Lang, A., Pellecchia, G., Van Eimeren, T., … Strafella, A. (2009). Increased striatal dopamine release in Parkinsonian patients with pathological gambling: a [11C] raclopride PET study. Brain, 132(5), 1376–1385.Google Scholar
  25. Tan, A., Salgado, M., & Fahn, S. (1996). Rapid eye movement sleep behavior disorder preceding Parkinson’s disease with therapeutic response to levodopa. Movement Disorders, 11(2), 214–216.CrossRefGoogle Scholar
  26. Tanaka, S. C., Schweighofer, N., Asahi, S., Shishida, K., Okamoto, Y., Yamawaki, S., et al. (2007). Serotonin differentially regulates short- and long-term prediction of rewards in the ventral and dorsal striatum. PLoS ONE, 2(12), e1333. https://doi.org/10.1371/journal.pone.0001333.
  27. Wylie, S. A., Ridderinkhof, K. R., Bashore, T. R., & van den Wildenberg, W. P. (2010). The effect of Parkinson’s disease on the dynamics of on-line and proactive cognitive control during action selection. Journal of Cognitive Neuroscience, 22(9), 2058–2073.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pragathi Priyadharsini Balasubramani
    • 1
  • V. Srinivasa Chakravarthy
    • 2
  • Balaraman Ravindran
    • 3
  • Ahmed A. Moustafa
    • 4
  1. 1.Department of NeuroscienceUniversity of Rochester Medical CenterRochesterUSA
  2. 2.Department of BiotechnologyIndian Institute of Technology MadrasChennaiIndia
  3. 3.Department of Computer Science and EngineeringIndian Institute of Technology MadrasChennaiIndia
  4. 4.School of Social Sciences and Psychology & Marcs Institute for Brain and BehaviourWestern Sydney UniversitySydneyAustralia

Personalised recommendations