Skip to main content

Studying the Effect of Dopaminergic Medication and STN–DBS on Cognitive Function Using a Spiking Basal Ganglia Model

  • Chapter
  • First Online:
Computational Neuroscience Models of the Basal Ganglia

Part of the book series: Cognitive Science and Technology ((CSAT))

  • 886 Accesses

Abstract

Using the spiking Izhikevich model used in the earlier chapters, we studied the effect of medication [L-Dopa and dopamine agonists (DAA)] and subthalamic nucleus (STN) deep brain stimulation on decision making using two cognitive tasks, i.e., Iowa gambling task (IGT) and the probabilistic learning task (PLT) and were validated using the experimental results. Based on the experimental observations that dopaminergic activity is analogous to temporal difference (TD) and induces cortico-striatal plasticity, we introduced learning in the cortico-striatal weights using the reinforcement learning framework. For PLT and IGT, the model in PD condition under medication (L-Dopa) was unable to learn from punishments which is attributed to excess dopamine levels in striatum even during punishment. The model under DAA was impulsive reflected in the lower RT in PLT and negative score in IGT. We varied two parameters during DBS (1) the electrode position within STN and (2) antidromic activation of GPe neurons. The performance in both IGT (Score) and PLT (reaction time) was dependent on the position of the electrode and amplitude of the current for a specific electrode position. We also observed that a higher antidromic activation of GPe neurons does not impact the learning ability but decreases reaction time as reported in DBS patients for PLT. These results suggest a probable role of electrode and antidromic activation in modulating the STN activity and eventually affecting the patient’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Benabid, A. L. (2003). Deep brain stimulation for Parkinson’s disease. Current Opinion in Neurobiology, 13(6), 696–706.

    Article  Google Scholar 

  • Brittain, J.-S., Watkins, K. E., Joundi, R. A., Ray, N. J., Holland, P., Green, A. L., et al. (2012). A role for the subthalamic nucleus in response inhibition during conflict. The Journal of Neuroscience, 32(39), 13396–13401.

    Article  Google Scholar 

  • Castrioto, A., Funkiewiez, A., Debû, B., Cools, R., Lhommée, E., Ardouin, C., … Pollak, P. (2015). Iowa gambling task impairment in Parkinson’s disease can be normalised by reduction of dopaminergic medication after subthalamic stimulation. Journal of Neurology, Neurosurgery & Psychiatry, 86(2), 186–190.

    Google Scholar 

  • Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M., Samanta, J., Sherman, S. J., & Frank, M. J. (2011). Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nature Neuroscience, 14(11), 1462–1467.

    Google Scholar 

  • Combs, H. L., Folley, B. S., Berry, D. T., Segerstrom, S. C., Han, D. Y., Anderson-Mooney, A. J., … van Horne, C. (2015). Cognition and depression following deep brain stimulation of the subthalamic nucleus and globus pallidus pars internus in Parkinson’s disease: A meta-analysis. Neuropsychology Review, 1–16.

    Google Scholar 

  • Cragg, S. J., Baufreton, J., Xue, Y., Bolam, J. P., & Bevan, M. D. (2004). Synaptic release of dopamine in the subthalamic nucleus. European Journal of Neuroscience, 20(7), 1788–1802.

    Article  Google Scholar 

  • Evens, R., Stankevich, Y., Dshemuchadse, M., Storch, A., Wolz, M., Reichmann, H., … Lueken, U. (2015). The impact of Parkinson’s disease and subthalamic deep brain stimulation on reward processing. Neuropsychologia.

    Google Scholar 

  • Florin, E., Müller, D., Pfeifer, J., Barbe, M. T., Fink, G. R., & Timmermann, L. (2013). Subthalamic stimulation modulates self-estimation of patients with Parkinson’s disease and induces risk-seeking behaviour. Brain, awt241.

    Google Scholar 

  • Foutz, T. J., & McIntyre, C. C. (2010). Evaluation of novel stimulus waveforms for deep brain stimulation. Journal of Neural Engineering, 7(6), 066008.

    Article  Google Scholar 

  • Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007). Hold your horses: Impulsivity, deep brain stimulation, and medication in Parkinsonism. Science, 318(5854), 1309–1312.

    Article  Google Scholar 

  • Frank, M. J., Seeberger, L. C., & O’reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science, 306(5703), 1940–1943.

    Article  Google Scholar 

  • Garcia, L., D’Alessandro, G., Bioulac, B., & Hammond, C. (2005). High-frequency stimulation in Parkinson’s disease: More or less? Trends in Neurosciences, 28(4), 209–216.

    Article  Google Scholar 

  • Gescheidt, T., Czekóová, K., Urbánek, T., Mareček, R., Mikl, M., Kubíková, R., … Bareš, M. (2012). Iowa Gambling Task in patients with early-onset Parkinson’s disease: Strategy analysis. Neurological Sciences, 33(6), 1329–1335.

    Google Scholar 

  • Hershey, T., Campbell, M. C., Videen, T. O., Lugar, H. M., Weaver, P. M., Hartlein, J., … Perlmutter, J. S. (2010). Mapping Go–No–Go performance within the subthalamic nucleus region. Brain, 133(12), 3625–3634.

    Google Scholar 

  • Hershey, T., Revilla, F., Wernle, A., Gibson, P. S., Dowling, J., & Perlmutter, J. (2004). Stimulation of STN impairs aspects of cognitive control in PD. Neurology, 62(7), 1110–1114.

    Article  Google Scholar 

  • Jahanshahi, M., Ardouin, C., Brown, R., Rothwell, J., Obeso, J., Albanese, A., … Pollak, P. (2000). The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain, 123(6), 1142–1154.

    Google Scholar 

  • Kravitz, A. V., Freeze, B. S., Parker, P. R., Kay, K., Thwin, M. T., Deisseroth, K., & Kreitzer, A. C. (2010). Regulation of Parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466(7306), 622–626.

    Google Scholar 

  • MacMahon, D. G., & Macphee, G. J. (2008). Dopamine agonists and impulse control disorders in Parkinson’s disease. Progress in Neurology and Psychiatry, 12(9), 5–9.

    Article  Google Scholar 

  • Mandali, A., Rengaswamy, M., Chakravarthy, S., & Moustafa, A. A. (2015). A spiking basal ganglia model of synchrony, exploration and decision making. Frontiers in Neuroscience, 9, 191.

    Article  Google Scholar 

  • Miocinovic, S., Parent, M., Butson, C. R., Hahn, P. J., Russo, G. S., Vitek, J. L., et al. (2006). Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. Journal of Neurophysiology, 96(3), 1569–1580.

    Article  Google Scholar 

  • Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3), 139–154.

    Article  MathSciNet  MATH  Google Scholar 

  • Ondo, W. G., & Lai, D. (2008). Predictors of impulsivity and reward seeking behavior with dopamine agonists. Parkinsonism & Related Disorders, 14(1), 28–32.

    Article  Google Scholar 

  • Oyama, G., Shimo, Y., Natori, S., Nakajima, M., Ishii, H., Arai, H., et al. (2011). Acute effects of bilateral subthalamic stimulation on decision-making in Parkinson’s disease. Parkinsonism & Related Disorders, 17(3), 189–193.

    Article  Google Scholar 

  • Reti, I. (2015). Brain stimulation: Methodologies and interventions. New York: Wiley.

    Book  Google Scholar 

  • Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 1–27.

    Article  MathSciNet  Google Scholar 

  • Smeding, H., Goudriaan, A., Foncke, E., Schuurman, P., Speelman, J., & Schmand, B. (2007). Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease. Journal of Neurology, Neurosurgery and Psychiatry, 78(5), 517–519.

    Article  Google Scholar 

  • Smeding, H. M., Speelman, J. D., Huizenga, H. M., Schuurman, P. R., & Schmand, B. (2009). Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson disease. Journal of Neurology, Neurosurgery & Psychiatry.

    Google Scholar 

  • Smith, Y., & Kieval, J. Z. (2000). Anatomy of the dopamine system in the basal ganglia. Trends in Neurosciences, 23, S28–S33.

    Article  Google Scholar 

  • Sudhyadhom, A., Bova, F. J., Foote, K. D., Rosado, C. A., Kirsch-Darrow, L., & Okun, M. S. (2007). Limbic, associative, and motor territories within the targets for deep brain stimulation: Potential clinical implications. Current Neurology and Neuroscience Reports, 7(4), 278–289.

    Article  Google Scholar 

  • Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30(5), 228–235.

    Article  Google Scholar 

  • Voon, V., Thomsen, T., Miyasaki, J. M., de Souza, M., Shafro, A., Fox, S. H., … Zurowski, M. (2007). Factors associated with dopaminergic drug–related pathological gambling in Parkinson disease. Archives of Neurology, 64(2), 212–216.

    Google Scholar 

  • Witt, K., Granert, O., Daniels, C., Volkmann, J., Falk, D., van Eimeren, T., et al. (2013). Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: Results from a randomized trial. Brain, 136(7), 2109–2119.

    Article  Google Scholar 

  • York, M. K., Wilde, E. A., Simpson, R., & Jankovic, J. (2009). Relationship between neuropsychological outcome and DBS surgical trajectory and electrode location. Journal of the Neurological Sciences, 287(1), 159–171.

    Article  Google Scholar 

  • Zaghloul, K. A., Weidemann, C. T., Lega, B. C., Jaggi, J. L., Baltuch, G. H., & Kahana, M. J. (2012). Neuronal activity in the human subthalamic nucleus encodes decision conflict during action selection. The Journal of Neuroscience, 32(7), 2453–2460.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Srinivasa Chakravarthy .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mandali, A., Srinivasa Chakravarthy, V. (2018). Studying the Effect of Dopaminergic Medication and STN–DBS on Cognitive Function Using a Spiking Basal Ganglia Model. In: Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8494-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8494-2_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8493-5

  • Online ISBN: 978-981-10-8494-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics