Studying the Effect of Dopaminergic Medication and STN–DBS on Cognitive Function Using a Spiking Basal Ganglia Model

  • Alekhya Mandali
  • V. Srinivasa Chakravarthy
Part of the Cognitive Science and Technology book series (CSAT)


Using the spiking Izhikevich model used in the earlier chapters, we studied the effect of medication [L-Dopa and dopamine agonists (DAA)] and subthalamic nucleus (STN) deep brain stimulation on decision making using two cognitive tasks, i.e., Iowa gambling task (IGT) and the probabilistic learning task (PLT) and were validated using the experimental results. Based on the experimental observations that dopaminergic activity is analogous to temporal difference (TD) and induces cortico-striatal plasticity, we introduced learning in the cortico-striatal weights using the reinforcement learning framework. For PLT and IGT, the model in PD condition under medication (L-Dopa) was unable to learn from punishments which is attributed to excess dopamine levels in striatum even during punishment. The model under DAA was impulsive reflected in the lower RT in PLT and negative score in IGT. We varied two parameters during DBS (1) the electrode position within STN and (2) antidromic activation of GPe neurons. The performance in both IGT (Score) and PLT (reaction time) was dependent on the position of the electrode and amplitude of the current for a specific electrode position. We also observed that a higher antidromic activation of GPe neurons does not impact the learning ability but decreases reaction time as reported in DBS patients for PLT. These results suggest a probable role of electrode and antidromic activation in modulating the STN activity and eventually affecting the patient’s performance.


  1. Benabid, A. L. (2003). Deep brain stimulation for Parkinson’s disease. Current Opinion in Neurobiology, 13(6), 696–706.CrossRefGoogle Scholar
  2. Brittain, J.-S., Watkins, K. E., Joundi, R. A., Ray, N. J., Holland, P., Green, A. L., et al. (2012). A role for the subthalamic nucleus in response inhibition during conflict. The Journal of Neuroscience, 32(39), 13396–13401.CrossRefGoogle Scholar
  3. Castrioto, A., Funkiewiez, A., Debû, B., Cools, R., Lhommée, E., Ardouin, C., … Pollak, P. (2015). Iowa gambling task impairment in Parkinson’s disease can be normalised by reduction of dopaminergic medication after subthalamic stimulation. Journal of Neurology, Neurosurgery & Psychiatry, 86(2), 186–190.Google Scholar
  4. Cavanagh, J. F., Wiecki, T. V., Cohen, M. X., Figueroa, C. M., Samanta, J., Sherman, S. J., & Frank, M. J. (2011). Subthalamic nucleus stimulation reverses mediofrontal influence over decision threshold. Nature Neuroscience, 14(11), 1462–1467.Google Scholar
  5. Combs, H. L., Folley, B. S., Berry, D. T., Segerstrom, S. C., Han, D. Y., Anderson-Mooney, A. J., … van Horne, C. (2015). Cognition and depression following deep brain stimulation of the subthalamic nucleus and globus pallidus pars internus in Parkinson’s disease: A meta-analysis. Neuropsychology Review, 1–16.Google Scholar
  6. Cragg, S. J., Baufreton, J., Xue, Y., Bolam, J. P., & Bevan, M. D. (2004). Synaptic release of dopamine in the subthalamic nucleus. European Journal of Neuroscience, 20(7), 1788–1802.CrossRefGoogle Scholar
  7. Evens, R., Stankevich, Y., Dshemuchadse, M., Storch, A., Wolz, M., Reichmann, H., … Lueken, U. (2015). The impact of Parkinson’s disease and subthalamic deep brain stimulation on reward processing. Neuropsychologia.Google Scholar
  8. Florin, E., Müller, D., Pfeifer, J., Barbe, M. T., Fink, G. R., & Timmermann, L. (2013). Subthalamic stimulation modulates self-estimation of patients with Parkinson’s disease and induces risk-seeking behaviour. Brain, awt241.Google Scholar
  9. Foutz, T. J., & McIntyre, C. C. (2010). Evaluation of novel stimulus waveforms for deep brain stimulation. Journal of Neural Engineering, 7(6), 066008.CrossRefGoogle Scholar
  10. Frank, M. J., Samanta, J., Moustafa, A. A., & Sherman, S. J. (2007). Hold your horses: Impulsivity, deep brain stimulation, and medication in Parkinsonism. Science, 318(5854), 1309–1312.CrossRefGoogle Scholar
  11. Frank, M. J., Seeberger, L. C., & O’reilly, R. C. (2004). By carrot or by stick: Cognitive reinforcement learning in Parkinsonism. Science, 306(5703), 1940–1943.CrossRefGoogle Scholar
  12. Garcia, L., D’Alessandro, G., Bioulac, B., & Hammond, C. (2005). High-frequency stimulation in Parkinson’s disease: More or less? Trends in Neurosciences, 28(4), 209–216.CrossRefGoogle Scholar
  13. Gescheidt, T., Czekóová, K., Urbánek, T., Mareček, R., Mikl, M., Kubíková, R., … Bareš, M. (2012). Iowa Gambling Task in patients with early-onset Parkinson’s disease: Strategy analysis. Neurological Sciences, 33(6), 1329–1335.Google Scholar
  14. Hershey, T., Campbell, M. C., Videen, T. O., Lugar, H. M., Weaver, P. M., Hartlein, J., … Perlmutter, J. S. (2010). Mapping Go–No–Go performance within the subthalamic nucleus region. Brain, 133(12), 3625–3634.Google Scholar
  15. Hershey, T., Revilla, F., Wernle, A., Gibson, P. S., Dowling, J., & Perlmutter, J. (2004). Stimulation of STN impairs aspects of cognitive control in PD. Neurology, 62(7), 1110–1114.CrossRefGoogle Scholar
  16. Jahanshahi, M., Ardouin, C., Brown, R., Rothwell, J., Obeso, J., Albanese, A., … Pollak, P. (2000). The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain, 123(6), 1142–1154.Google Scholar
  17. Kravitz, A. V., Freeze, B. S., Parker, P. R., Kay, K., Thwin, M. T., Deisseroth, K., & Kreitzer, A. C. (2010). Regulation of Parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466(7306), 622–626.Google Scholar
  18. MacMahon, D. G., & Macphee, G. J. (2008). Dopamine agonists and impulse control disorders in Parkinson’s disease. Progress in Neurology and Psychiatry, 12(9), 5–9.CrossRefGoogle Scholar
  19. Mandali, A., Rengaswamy, M., Chakravarthy, S., & Moustafa, A. A. (2015). A spiking basal ganglia model of synchrony, exploration and decision making. Frontiers in Neuroscience, 9, 191.CrossRefGoogle Scholar
  20. Miocinovic, S., Parent, M., Butson, C. R., Hahn, P. J., Russo, G. S., Vitek, J. L., et al. (2006). Computational analysis of subthalamic nucleus and lenticular fasciculus activation during therapeutic deep brain stimulation. Journal of Neurophysiology, 96(3), 1569–1580.CrossRefGoogle Scholar
  21. Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology, 53(3), 139–154.MathSciNetCrossRefzbMATHGoogle Scholar
  22. Ondo, W. G., & Lai, D. (2008). Predictors of impulsivity and reward seeking behavior with dopamine agonists. Parkinsonism & Related Disorders, 14(1), 28–32.CrossRefGoogle Scholar
  23. Oyama, G., Shimo, Y., Natori, S., Nakajima, M., Ishii, H., Arai, H., et al. (2011). Acute effects of bilateral subthalamic stimulation on decision-making in Parkinson’s disease. Parkinsonism & Related Disorders, 17(3), 189–193.CrossRefGoogle Scholar
  24. Reti, I. (2015). Brain stimulation: Methodologies and interventions. New York: Wiley.CrossRefGoogle Scholar
  25. Schultz, W. (1998). Predictive reward signal of dopamine neurons. Journal of Neurophysiology, 80(1), 1–27.MathSciNetCrossRefGoogle Scholar
  26. Smeding, H., Goudriaan, A., Foncke, E., Schuurman, P., Speelman, J., & Schmand, B. (2007). Pathological gambling after bilateral subthalamic nucleus stimulation in Parkinson disease. Journal of Neurology, Neurosurgery and Psychiatry, 78(5), 517–519.CrossRefGoogle Scholar
  27. Smeding, H. M., Speelman, J. D., Huizenga, H. M., Schuurman, P. R., & Schmand, B. (2009). Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson disease. Journal of Neurology, Neurosurgery & Psychiatry.Google Scholar
  28. Smith, Y., & Kieval, J. Z. (2000). Anatomy of the dopamine system in the basal ganglia. Trends in Neurosciences, 23, S28–S33.CrossRefGoogle Scholar
  29. Sudhyadhom, A., Bova, F. J., Foote, K. D., Rosado, C. A., Kirsch-Darrow, L., & Okun, M. S. (2007). Limbic, associative, and motor territories within the targets for deep brain stimulation: Potential clinical implications. Current Neurology and Neuroscience Reports, 7(4), 278–289.CrossRefGoogle Scholar
  30. Surmeier, D. J., Ding, J., Day, M., Wang, Z., & Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends in Neurosciences, 30(5), 228–235.CrossRefGoogle Scholar
  31. Voon, V., Thomsen, T., Miyasaki, J. M., de Souza, M., Shafro, A., Fox, S. H., … Zurowski, M. (2007). Factors associated with dopaminergic drug–related pathological gambling in Parkinson disease. Archives of Neurology, 64(2), 212–216.Google Scholar
  32. Witt, K., Granert, O., Daniels, C., Volkmann, J., Falk, D., van Eimeren, T., et al. (2013). Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: Results from a randomized trial. Brain, 136(7), 2109–2119.CrossRefGoogle Scholar
  33. York, M. K., Wilde, E. A., Simpson, R., & Jankovic, J. (2009). Relationship between neuropsychological outcome and DBS surgical trajectory and electrode location. Journal of the Neurological Sciences, 287(1), 159–171.CrossRefGoogle Scholar
  34. Zaghloul, K. A., Weidemann, C. T., Lega, B. C., Jaggi, J. L., Baltuch, G. H., & Kahana, M. J. (2012). Neuronal activity in the human subthalamic nucleus encodes decision conflict during action selection. The Journal of Neuroscience, 32(7), 2453–2460.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Psychiatry, School of Clinical SciencesUniversity of CambridgeCambridgeUK
  2. 2.Computational Neuroscience Lab, Department of Biotechnology, Bhupat and Jyoti Mehta School of BiosciencesIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations