Skip to main content

Part of the book series: Cognitive Science and Technology ((CSAT))

  • 890 Accesses

Abstract

The area of computational modeling of basal ganglia has seen an explosive growth in the last couple of decades. In this area, there is currently a multitude of modeling approaches, each approaching the functions of basal ganglia in a unique fashion, pursuing a specialized line of investigation. Existing models fall under certain prominent schools of thought, each successfully explaining a subset of basal ganglia functions that are amenable to that specific approach, while ignoring a host of other functions. The aim of this book is to describe a class of the basal ganglia models that comprehensively accommodates a wide range of the basal ganglia functions within a single modeling framework. This class of models is essentially based on reinforcement learning, a currently dominant paradigm for describing the basal ganglia function. However, the class of computational models described herein deviate significantly from some of the classical approaches like, for example, the Go-NoGo interpretation of the functional pathways of the basal ganglia. This class of models successfully explains a wide variety of motor functions, and some cognitive functions of the basal ganglia, in healthy and pathological conditions like the Parkinson’s disease and other disorders associated with the basal ganglia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atallah, H. E., Lopez-Paniagua, D., Rudy, J. W., & O’Reilly, R. C. (2007). Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nature Neuroscience, 10(1), 126–131. https://doi.org/10.1038/nn1817.

    Article  Google Scholar 

  • Balasubramani, P. P., Chakravarthy, S., Ravindran, B., & Moustafa, A. A. (2014). An extended reinforcement learning model of basal ganglia to understand the contributions of serotonin and dopamine in risk-based decision making, reward prediction, and punishment learning. Frontiers in Computational Neuroscience, 8, 47.

    Article  Google Scholar 

  • Balasubramani, P. P., Chakravarthy, S., Ravindran, B., & Moustafa, A. A. (2015). A network model of basal ganglia for understanding the roles of dopamine and serotonin in reward-punishment-risk based decision making. Frontiers in Computational Neuroscience, 9, 76.

    Article  Google Scholar 

  • Brown, L. L., Feldman, S. M., Smith, D. M., Cavanaugh, J. R., Ackermann, R. F., & Graybiel, A. M. (2002). Differential metabolic activity in the striosome and matrix compartments of the rat striatum during natural behaviors. Journal of Neuroscience, 22(1), 305–314.

    Google Scholar 

  • Colas, J. T., Pauli, W. M., Larsen, T., Tyszka, J. M., & O’Doherty, J. P. (2017). Distinct prediction errors in mesostriatal circuits of the human brain mediate learning about the values of both states and actions: evidence from high-resolution fMRI. PLoS Computational Biology, 13(10), e1005810. https://doi.org/10.1371/journal.pcbi.1005810.

    Article  Google Scholar 

  • Gangadhar, G., Joseph, D., & Chakravarthy, V. S. (2008). Understanding Parkinsonian handwriting through a computational model of basal ganglia. Neural Computation, 20(10), 2491–2525.

    Article  Google Scholar 

  • Gangadhar, G., Joseph, D., Srinivasan, A. V., Subramanian, D., Shivakeshavan, R. G., Shobana, N., & Chakravarthy, V. S. (2009). A computational model of Parkinsonian handwriting that highlights the role of the indirect pathway in the basal ganglia. Human Movement Science, 28(5), 602–618.

    Google Scholar 

  • Gupta, A., Balasubramani, P. P., & Chakravarthy, V. S. (2013). Computational model of precision grip in Parkinson’s disease: A utility based approach. Frontiers in Computational Neuroscience, 7. https://doi.org/10.3389/fncom.2013.00172.

  • Helie, S., Chakravarthy, S., & Moustafa, A. A. (2013). Exploring the cognitive and motor functions of the basal ganglia: an integrative review of computational cognitive neuroscience models. Frontiers in Computational Neuroscience, 7, 174. https://doi.org/10.3389/fncom.2013.00174.

    Article  Google Scholar 

  • Houk, J. C., Davis, J. L., & Beiser, D. G. (1995). Models of information processing in the basal ganglia. Cambridge: The MIT press.

    Google Scholar 

  • Krishnan, R., Ratnadurai, S., Subramanian, D., Chakravarthy, V. S., & Rengaswamy, M. (2011). Modeling the role of basal ganglia in saccade generation: is the indirect pathway the explorer? Neural Networks, 24(8), 801–813.

    Google Scholar 

  • Li, J., McClure, S. M., King-Casas, B., & Montague, P. R. (2006). Policy adjustment in a dynamic economic game. PLoS ONE, 1, e103. https://doi.org/10.1371/journal.pone.0000103.

    Article  Google Scholar 

  • Magdoom, K., Subramanian, D., Chakravarthy, V. S., Ravindran, B., Amari, S.-I., & Meenakshisundaram, N. (2011). Modeling basal ganglia for understanding parkinsonian reaching movements. Neural Computation, 23(2), 477–516.

    Article  MATH  Google Scholar 

  • Mandali, A., Rengaswamy, M., Chakravarthy, S., & Moustafa, A. A. (2015). A spiking Basal Ganglia model of synchrony, exploration and decision making. Frontiers in Neuroscience, 9, 191.

    Article  Google Scholar 

  • Moustafa, A. A. & Maida, A. S. (2007). Using TD learning to simulate working memory performance in a model of the prefrontal cortex and basal ganglia. Cognitive Systems Research, 8, 262–281.

    Article  Google Scholar 

  • Moustafa, A. A., Chakravarthy, S., Phillips, J. R., Gupta, A., Keri, S., Polner, B., … Jahanshahi, M. (2016). Motor symptoms in Parkinson’s disease: A unified framework. Neuroscience & Biobehavioral Reviews, 68, 727–740.

    Google Scholar 

  • Moustafa, A. A., Cohen, M. X., Sherman, S. J., & Frank, M. J. (2008). A role for dopamine in temporal decision making and reward maximization in parkinsonism. Journal of Neuroscience, 28(47), 12294–12304. https://doi.org/10.1523/JNEUROSCI.3116-08.2008.

    Article  Google Scholar 

  • Muralidharan, V., Balasubramani, P. P., Chakravarthy, V. S., Gilat, M., Lewis, S. J., & Moustafa, A. A. (2017). A Neurocomputational Model of the Effect of Cognitive Load on Freezing of Gait in Parkinson’s Disease. Frontiers in Human Neuroscience, 10, 649. https://doi.org/10.3389/fnhum.2016.00649.

    Article  Google Scholar 

  • Muralidharan, V., Balasubramani, P. P., Chakravarthy, V. S., Lewis, S. J., & Moustafa, A. A. (2014). A computational model of altered gait patterns in parkinson’s disease patients negotiating narrow doorways. Frontiers in Human Neuroscience, 7, 190. https://doi.org/10.3389/fncom.2013.00190.

    Google Scholar 

  • O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452–454.

    Article  Google Scholar 

  • Piray, P., Zeighami, Y., Bahrami, F., Eissa, A. M., Hewedi, D. H., & Moustafa, A. A. (2014). Impulse control disorders in Parkinson’s disease are associated with dysfunction in stimulus valuation but not action valuation. The Journal of Neuroscience, 34(23), 7814–7824.

    Article  Google Scholar 

  • Sridharan, D., Prashanth, P., & Chakravarthy, V. (2006). The role of the basal ganglia in exploration in a neural model based on reinforcement learning. International Journal of Neural Systems, 16(02), 111–124.

    Article  Google Scholar 

  • Sukumar, D., Rengaswamy, M., & Chakravarthy, V. S. (2012). Modeling the contributions of Basal ganglia and Hippocampus to spatial navigation using reinforcement learning. PLoS ONE, 7(10), e47467.

    Article  Google Scholar 

  • Wilson, C. J. (2004). Basal ganglia. In G. M. Shepherd (Ed.), The synaptic organization of the brain (pp. 361–413). New York: Oxford University Press.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Srinivasa Chakravarthy .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Srinivasa Chakravarthy, V., Moustafa, A.A. (2018). Introduction. In: Computational Neuroscience Models of the Basal Ganglia. Cognitive Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-10-8494-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-8494-2_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-8493-5

  • Online ISBN: 978-981-10-8494-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics