Skip to main content

Spatial Distribution of Ionic Hydration Energy and Hyper-Mobile Water

  • Chapter
  • First Online:
Book cover The Role of Water in ATP Hydrolysis Energy Transduction by Protein Machinery

Abstract

In this chapter, we provide the following two topics.

  1. 1:

    We carry out DRS measurements for divalent metal chloride and trivalent metal chloride solutions and clarify the hydration states. All the tested solutions have hyper-mobile water (HMW) with higher dielectric relaxation frequency f1 (~20 GHz) than that of bulk water (12.6 GHz at 10 °C), and dispersion amplitude of HMW is aligned to Hofmeister series. According to the correlation between an intensity of HMW signal and water structure entropy, HMW can be a scale for the water structure.

  2. 2:

    We carry out the spatial-decomposition analysis of energetics of hydration for a series of ionic solutes in combination with molecular dynamics (MD) simulation. The hydration analysis is conducted on the basis of a spatial-decomposition formula for the excess partial molar energy of the ion that expresses the thermodynamic quantity as an integral over the whole space of the ion–water and water–water interactions conditioned by the ion–water distance. In addition, we examine the correlation between the electric field formed by ion and the number of HMW around ion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asami K, Hanai T, Koizumi N (1980) Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization. Biophys J 31:215–228

    Article  CAS  Google Scholar 

  • Bakker HJ (2008) Structural dynamics of aqueous salt solutions. Chem Rev 108:1456–1473

    Article  CAS  Google Scholar 

  • Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217

    Article  CAS  Google Scholar 

  • Brünger A, Brooks IIICL, Karplus M (1984) Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem Phys Lett 105:495–500

    Article  Google Scholar 

  • Buchner R (2008) What can be learnt from dielectric relaxation spectroscopy about ion solvation and association? Pure Appl Chem 80:1239–1252

    Article  CAS  Google Scholar 

  • Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  • Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621

    Article  CAS  Google Scholar 

  • Gurney RW (1953) Ionic processes in solution. McGraw-Hill, New York

    Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Jungwirth P, Tobias DJ (2006) Specific ion effects at the air/water interface. Chem Rev 106:1259–1281

    Article  CAS  Google Scholar 

  • Kaatze U (1989) Complex permittivity of water as a function of frequency and temperature. J Chem Eng Data 34:371–374

    Article  CAS  Google Scholar 

  • Kaatze U (2013) Measuring the dielectric properties of materials. Ninety-year development from low-frequency techniques to broadband spectroscopy and high-frequency imaging. Meas Sci Technol 24:012005

    Article  Google Scholar 

  • Kaatze U, Feldman Y (2006) Broadband dielectric spectrometry of liquids and biosystems. Meas Sci Technol 17:R17–R35

    Article  CAS  Google Scholar 

  • Kabir SR, Yokoyama K, Mihashi K, Kodama T, Suzuki M (2003) Hyper-mobile water is induced around actin filaments. Biophys J 85:3154–3161

    Article  CAS  Google Scholar 

  • Krestov GA (1991) Thermodynamics of solvation. Ellis Horwood, New York, pp 172–177

    Google Scholar 

  • Kubota Y, Yoshimori A, Matubayasi N, Suzuki M, Akiyama R (2012) Molecular dynamics study of fast dielectric relaxation of water around a molecular-sized ion. J Chem Phys 137(224502):1–4

    Google Scholar 

  • Laliberté M (2009) A model for calculating the heat capacity of aqueous solutions, with updated density and viscosity data. J Chem Eng Data 54(6):1725–1760

    Article  Google Scholar 

  • Lamoureux G, Roux B (2006) Absolute hydration free energy scale for alkali and halide ions established with a polarizable force field. J Phys Chem B 110:3308–3322

    Article  CAS  Google Scholar 

  • Li P, Roberts BP, Chakravorty DK, Merz KM Jr (2013) Rational design of particle mesh ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J Chem Theory Comput 9:2733–2748

    Article  CAS  Google Scholar 

  • Lo Nostro P, Ninham BW (2012) Hofmeister phenomena: an apdate on ion specificity in biology. Chem Rev 112:2286–2322

    Article  CAS  Google Scholar 

  • Marcus Y (1994) Viscosity B-coefficients, structural entropies and heat capacities, and the effects of ions on the structure of water. J Sol Chem 23(7):831–848

    Article  CAS  Google Scholar 

  • Marcus Y (1997) Ion properties. Marcel Dekker, New York

    Google Scholar 

  • Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370

    Article  CAS  Google Scholar 

  • Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    Article  CAS  Google Scholar 

  • Matubayasi N, Levy RM (1996) Thermodynamics of the hydration shell. 2. Excess volume and compressibility of a hydrophobi solute. J Phys Chem 100:2681–2688

    Article  CAS  Google Scholar 

  • Matubayasi N, Gallicchio E, Levy RM (1998) On the local and nonlocal components of solvation thermodynamics and their relation to solvation shell models. J Chem Phys 109:4864–4872

    Article  CAS  Google Scholar 

  • Matubayasi N, Reed LH, Levy RM (1994) Thermodynamics of the hydration shell. 1. Excess energy of a hydrophobic solute. J Phys Chem 98:10640–10649

    Article  CAS  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott M, JrRL Dunbrack, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher IIIWE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  Google Scholar 

  • Miyamoto S, Kollman PA (1992) Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  • Miyazaki T, Mogami G, Wazawa T, Kodama T, Suzuki M (2008) Measurement of the dielectric relaxation property of water-ion loose complex in aqueous solutions of salt at low concentrations. J Phys Chem A 112:10801–10806

    Article  CAS  Google Scholar 

  • Mogami G, Wazawa T, Morimoto N, Kodama T, Suzuki M (2011) Hydration properties of adenosine phosphate series as studied by microwave dielectric spectroscopy. Biophys Chem 154:1–7

    Article  CAS  Google Scholar 

  • Mogami G, Miyazaki T, Wazawa T, Matubayasi N, Suzuki M (2013) Anion-dependence of fast relaxation component in Na-, K-halide solutions at low concentrations measured by high-resolution microwave dielectric spectroscopy. J Phys Chem A 117:4851–4862

    Article  CAS  Google Scholar 

  • Mogami G, Suzuki M, Matubayasi N (2016) Spatial-decomposition analysis of energetics of energetics of ionic hydration. J Phys Chem B 120:1813–1821

    Article  CAS  Google Scholar 

  • Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93:1157–1204

    Article  CAS  Google Scholar 

  • Philip G, Robert JW, Mendel T, Clara W, William D, Linda R, William R, Fahd S, Barry L (1970) “Squiggle-H2O”. An enquiry into the importance of solvation effects in phosphate ester and anhydride reactions, 223(1):1–15

    Google Scholar 

  • Philips JC, Braun R, Wang W Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Google Scholar 

  • Robinson RA, Stokes RH (1959) Electrolyte solutions, 2nd revised ed. Dover publications, Mineola, New York

    Google Scholar 

  • Suzuki M, Kabir SR, Siddique MSP, Nazia US, Miyazaki T, Kodama T (2004) Myosin-induced volume increase of the hyper-mobile water surrounding actin filaments. Biochem Biophys Res Commun 322:340–346

    Article  CAS  Google Scholar 

  • Suzuki M, Imao A, Mogami G, Chishima R, Watanabe T, Yamaguchi T, Morimoto N, Wazawa T (2016) Strong dependence of hydration state of F-actin on the bound Mg2+/Ca2+ ions. J Phys Chem B 120:6917–6928

    Article  CAS  Google Scholar 

  • Suzuki M, Mogami G, Ohsugi H, Watanabe T, Matubayasi N (2017) Physical driving force of actomyosin motility based on the hydration effect. Cytoskeleton. https://doi.org/10.1002/cm.21417

    Article  PubMed  Google Scholar 

  • Szigeti B (1949) Polarisability and dielectric constant of ionic crystals. Trans Faraday Soc 45:155–166

    Article  CAS  Google Scholar 

  • Tu KM, Ishizuka R, Matubayasi N (2014a) Spatial-decomposition analysis of electrical conductivity in concentrated electrolyte solution. J Chem Phys 141:044126

    Article  Google Scholar 

  • Tu KM, Ishizuka R, Matubayasi N (2014b) Spatial-decomposition analysis of electrical conductivity in ionic liquid. J Chem Phys 141:244507

    Article  Google Scholar 

  • Van Gunsteren WF, Berendsen HJC (1988) A leap-frog algorithm for stochastic dynamics. Mol Simul 1:173–185

    Article  Google Scholar 

  • Wagner KW (1914) Erklärung der Dielectrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Archiv für Elektrotechnik 2:371–387

    Article  Google Scholar 

  • Wazawa T, Miyazaki T, Sambongi Y, Suzuki M (2010) Hydration analysis of Pseudomonas Aeruginosa cytochrome c551 upon acid unfolding by dielectric relaxation spectroscopy. Biophys Chem 151:160–169

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Mogami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mogami, G., Suzuki, M., Matubayasi, N. (2018). Spatial Distribution of Ionic Hydration Energy and Hyper-Mobile Water. In: Suzuki, M. (eds) The Role of Water in ATP Hydrolysis Energy Transduction by Protein Machinery. Springer, Singapore. https://doi.org/10.1007/978-981-10-8459-1_3

Download citation

Publish with us

Policies and ethics