Advertisement

Spatial Distribution of Ionic Hydration Energy and Hyper-Mobile Water

  • George Mogami
  • Makoto Suzuki
  • Nobuyuki Matubayasi
Chapter

Abstract

In this chapter, we provide the following two topics.
  1. 1:

    We carry out DRS measurements for divalent metal chloride and trivalent metal chloride solutions and clarify the hydration states. All the tested solutions have hyper-mobile water (HMW) with higher dielectric relaxation frequency f1 (~20 GHz) than that of bulk water (12.6 GHz at 10 °C), and dispersion amplitude of HMW is aligned to Hofmeister series. According to the correlation between an intensity of HMW signal and water structure entropy, HMW can be a scale for the water structure.

     
  2. 2:

    We carry out the spatial-decomposition analysis of energetics of hydration for a series of ionic solutes in combination with molecular dynamics (MD) simulation. The hydration analysis is conducted on the basis of a spatial-decomposition formula for the excess partial molar energy of the ion that expresses the thermodynamic quantity as an integral over the whole space of the ion–water and water–water interactions conditioned by the ion–water distance. In addition, we examine the correlation between the electric field formed by ion and the number of HMW around ion.

     

Keywords

Dielectric relaxation spectroscopy Hyper-mobile water Ionic hydration energy Spatial distribution Hofmeister effect 

References

  1. Asami K, Hanai T, Koizumi N (1980) Dielectric analysis of Escherichia coli suspensions in the light of the theory of interfacial polarization. Biophys J 31:215–228CrossRefGoogle Scholar
  2. Bakker HJ (2008) Structural dynamics of aqueous salt solutions. Chem Rev 108:1456–1473CrossRefGoogle Scholar
  3. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan S, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  4. Brünger A, Brooks IIICL, Karplus M (1984) Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem Phys Lett 105:495–500CrossRefGoogle Scholar
  5. Buchner R (2008) What can be learnt from dielectric relaxation spectroscopy about ion solvation and association? Pure Appl Chem 80:1239–1252CrossRefGoogle Scholar
  6. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh ewald method. J Chem Phys 103:8577–8593CrossRefGoogle Scholar
  7. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103:4613–4621CrossRefGoogle Scholar
  8. Gurney RW (1953) Ionic processes in solution. McGraw-Hill, New YorkGoogle Scholar
  9. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935CrossRefGoogle Scholar
  10. Jungwirth P, Tobias DJ (2006) Specific ion effects at the air/water interface. Chem Rev 106:1259–1281CrossRefGoogle Scholar
  11. Kaatze U (1989) Complex permittivity of water as a function of frequency and temperature. J Chem Eng Data 34:371–374CrossRefGoogle Scholar
  12. Kaatze U (2013) Measuring the dielectric properties of materials. Ninety-year development from low-frequency techniques to broadband spectroscopy and high-frequency imaging. Meas Sci Technol 24:012005CrossRefGoogle Scholar
  13. Kaatze U, Feldman Y (2006) Broadband dielectric spectrometry of liquids and biosystems. Meas Sci Technol 17:R17–R35CrossRefGoogle Scholar
  14. Kabir SR, Yokoyama K, Mihashi K, Kodama T, Suzuki M (2003) Hyper-mobile water is induced around actin filaments. Biophys J 85:3154–3161CrossRefGoogle Scholar
  15. Krestov GA (1991) Thermodynamics of solvation. Ellis Horwood, New York, pp 172–177Google Scholar
  16. Kubota Y, Yoshimori A, Matubayasi N, Suzuki M, Akiyama R (2012) Molecular dynamics study of fast dielectric relaxation of water around a molecular-sized ion. J Chem Phys 137(224502):1–4Google Scholar
  17. Laliberté M (2009) A model for calculating the heat capacity of aqueous solutions, with updated density and viscosity data. J Chem Eng Data 54(6):1725–1760CrossRefGoogle Scholar
  18. Lamoureux G, Roux B (2006) Absolute hydration free energy scale for alkali and halide ions established with a polarizable force field. J Phys Chem B 110:3308–3322CrossRefGoogle Scholar
  19. Li P, Roberts BP, Chakravorty DK, Merz KM Jr (2013) Rational design of particle mesh ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J Chem Theory Comput 9:2733–2748CrossRefGoogle Scholar
  20. Lo Nostro P, Ninham BW (2012) Hofmeister phenomena: an apdate on ion specificity in biology. Chem Rev 112:2286–2322CrossRefGoogle Scholar
  21. Marcus Y (1994) Viscosity B-coefficients, structural entropies and heat capacities, and the effects of ions on the structure of water. J Sol Chem 23(7):831–848CrossRefGoogle Scholar
  22. Marcus Y (1997) Ion properties. Marcel Dekker, New YorkGoogle Scholar
  23. Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109:1346–1370CrossRefGoogle Scholar
  24. Martyna GJ, Tobias DJ, Klein ML (1994) Constant pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189CrossRefGoogle Scholar
  25. Matubayasi N, Levy RM (1996) Thermodynamics of the hydration shell. 2. Excess volume and compressibility of a hydrophobi solute. J Phys Chem 100:2681–2688CrossRefGoogle Scholar
  26. Matubayasi N, Gallicchio E, Levy RM (1998) On the local and nonlocal components of solvation thermodynamics and their relation to solvation shell models. J Chem Phys 109:4864–4872CrossRefGoogle Scholar
  27. Matubayasi N, Reed LH, Levy RM (1994) Thermodynamics of the hydration shell. 1. Excess energy of a hydrophobic solute. J Phys Chem 98:10640–10649CrossRefGoogle Scholar
  28. MacKerell AD Jr, Bashford D, Bellott M, JrRL Dunbrack, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher IIIWE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616CrossRefGoogle Scholar
  29. Miyamoto S, Kollman PA (1992) Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962CrossRefGoogle Scholar
  30. Miyazaki T, Mogami G, Wazawa T, Kodama T, Suzuki M (2008) Measurement of the dielectric relaxation property of water-ion loose complex in aqueous solutions of salt at low concentrations. J Phys Chem A 112:10801–10806CrossRefGoogle Scholar
  31. Mogami G, Wazawa T, Morimoto N, Kodama T, Suzuki M (2011) Hydration properties of adenosine phosphate series as studied by microwave dielectric spectroscopy. Biophys Chem 154:1–7CrossRefGoogle Scholar
  32. Mogami G, Miyazaki T, Wazawa T, Matubayasi N, Suzuki M (2013) Anion-dependence of fast relaxation component in Na-, K-halide solutions at low concentrations measured by high-resolution microwave dielectric spectroscopy. J Phys Chem A 117:4851–4862CrossRefGoogle Scholar
  33. Mogami G, Suzuki M, Matubayasi N (2016) Spatial-decomposition analysis of energetics of energetics of ionic hydration. J Phys Chem B 120:1813–1821CrossRefGoogle Scholar
  34. Ohtaki H, Radnai T (1993) Structure and dynamics of hydrated ions. Chem Rev 93:1157–1204CrossRefGoogle Scholar
  35. Philip G, Robert JW, Mendel T, Clara W, William D, Linda R, William R, Fahd S, Barry L (1970) “Squiggle-H2O”. An enquiry into the importance of solvation effects in phosphate ester and anhydride reactions, 223(1):1–15Google Scholar
  36. Philips JC, Braun R, Wang W Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kale L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802Google Scholar
  37. Robinson RA, Stokes RH (1959) Electrolyte solutions, 2nd revised ed. Dover publications, Mineola, New YorkGoogle Scholar
  38. Suzuki M, Kabir SR, Siddique MSP, Nazia US, Miyazaki T, Kodama T (2004) Myosin-induced volume increase of the hyper-mobile water surrounding actin filaments. Biochem Biophys Res Commun 322:340–346CrossRefGoogle Scholar
  39. Suzuki M, Imao A, Mogami G, Chishima R, Watanabe T, Yamaguchi T, Morimoto N, Wazawa T (2016) Strong dependence of hydration state of F-actin on the bound Mg2+/Ca2+ ions. J Phys Chem B 120:6917–6928CrossRefGoogle Scholar
  40. Suzuki M, Mogami G, Ohsugi H, Watanabe T, Matubayasi N (2017) Physical driving force of actomyosin motility based on the hydration effect. Cytoskeleton.  https://doi.org/10.1002/cm.21417CrossRefPubMedGoogle Scholar
  41. Szigeti B (1949) Polarisability and dielectric constant of ionic crystals. Trans Faraday Soc 45:155–166CrossRefGoogle Scholar
  42. Tu KM, Ishizuka R, Matubayasi N (2014a) Spatial-decomposition analysis of electrical conductivity in concentrated electrolyte solution. J Chem Phys 141:044126CrossRefGoogle Scholar
  43. Tu KM, Ishizuka R, Matubayasi N (2014b) Spatial-decomposition analysis of electrical conductivity in ionic liquid. J Chem Phys 141:244507CrossRefGoogle Scholar
  44. Van Gunsteren WF, Berendsen HJC (1988) A leap-frog algorithm for stochastic dynamics. Mol Simul 1:173–185CrossRefGoogle Scholar
  45. Wagner KW (1914) Erklärung der Dielectrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Archiv für Elektrotechnik 2:371–387CrossRefGoogle Scholar
  46. Wazawa T, Miyazaki T, Sambongi Y, Suzuki M (2010) Hydration analysis of Pseudomonas Aeruginosa cytochrome c551 upon acid unfolding by dielectric relaxation spectroscopy. Biophys Chem 151:160–169CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • George Mogami
    • 1
  • Makoto Suzuki
    • 1
    • 2
    • 3
  • Nobuyuki Matubayasi
    • 4
    • 5
  1. 1.Department of Materials Processing, Graduate School of EngineeringTohoku UniversitySendaiJapan
  2. 2.Biological and Molecular Dynamics, Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku UniversitySendaiJapan
  3. 3.Department of Biomolecular Engineering, Graduate School of EngineeringTohoku UniversitySendaiJapan
  4. 4.Division of Chemical Engineering, Graduate School of Engineering ScienceOsaka UniversityToyonakaJapan
  5. 5.Elements Strategy Initiative for Catalysts and Batteries, Kyoto UniversityKatsuraJapan

Personalised recommendations