Skip to main content

Nucleoprotein Intermediates in HIV-1 DNA Integration: Structure and Function of HIV-1 Intasomes

  • Chapter
  • First Online:
Virus Protein and Nucleoprotein Complexes

Part of the book series: Subcellular Biochemistry ((SCBI,volume 88))

Abstract

Integration of a DNA copy of the viral genome into host DNA is an essential step in the replication cycle of HIV-1 and other retroviruses and is an important therapeutic target for drugs. DNA integration is catalyzed by the viral integrase protein and proceeds through a series of stable nucleoprotein complexes of integrase, viral DNA ends and target DNA. These nucleoprotein complexes are collectively called intasomes. Retroviral intasomes undergo a series of transitions between initial formation and catalysis of the DNA cutting and joining steps of DNA integration. Intasomes, rather than free integrase protein, are the target of currently approved drugs that target HIV-1 DNA integration. High-resolution structures of HIV-1 intasomes are needed to understand their detailed mechanism of action and how HIV-1 may escape by developing resistance. Here, we focus on our current knowledge of the structure and function of HIV-1 intasomes, with reference to related systems as required to put this knowledge in context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ariyoshi M, Vassylyev DG, Iwasaki H, Nakamura H, Shinagawa H, Morikawa K (1994) Atomic structure of the RuvC resolvase: a holliday junction-specific endonuclease from E. Coli. Cell 78:1063–1072

    Article  CAS  Google Scholar 

  • Ballandras-Colas A, Browne M, Cook NJ, Dewdney TG, Domeler B, Cherepanov P, Lyumkis D, Engelman AN (2016) Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature 530(7590):358. https://doi.org/10.1038/nature16955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballandras-Colas A, Maskell DP, Serrao E, Locke J, Swuec P, Jonsson SR, Kotecha A, Cook NJ, Pye VE, Taylor IA, Andresdottir V, Engelman AN, Costa A, Cherepanov P (2017) A supramolecular assembly mediates lentiviral DNA integration. Science 355(6320):93–95. https://doi.org/10.1126/science.aah7002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowerman B, Brown PO, Bishop JM, Varmus HE (1989) A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 3:469–478

    Article  CAS  Google Scholar 

  • Brown PO, Bowerman B, Varmus HE, Bishop JM (1987) Correct integration of retroviral DNA in vitro. Cell 49:347–356

    Article  CAS  Google Scholar 

  • Brown PO, Bowerman B, Varmus HE, Bishop JM (1989) Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc Natl Acad Sci U S A 86:2525–2529

    Article  CAS  Google Scholar 

  • Bukrinsky MI, Sharova N, McDonald TL, Pushkarskaya T, Tarpley WG, Stevenson M (1993) Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci U S A 90:6125–6129

    Article  CAS  Google Scholar 

  • Bushman FD, Fujiwara T, Craigie R (1990) Retroviral DNA integration directed by HIV integration protein in vitro. Science 249:1555–1558

    Article  CAS  Google Scholar 

  • Cai M, Zheng R, Caffrey M, Craigie R, Clore GM, Gronenborn AM (1997) Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat Struct Biol 4:567–577

    Article  CAS  Google Scholar 

  • Chen JCH, Krucinski J, Miercke LJW, Finer-Moore JS, Tang AH, Leavitt AD, Stroud RM (2000a) Crystal structure of the HIV-1 integrase catalytic core and C- terminal domains: a model for viral DNA binding. Proc Natl Acad Sci U S A 97:8233–8238

    Article  CAS  Google Scholar 

  • Chen ZG, Yan YW, Munshi S, Li Y, Zugay-Murphy J, Xu B, Witmer M, Felock P, Wolfe A, Sardana V, Emini EA, Hazuda D, Kuo LC (2000b) X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293) - an initial glance of the viral DNA binding platform. J Mol Biol 296:521–533

    Article  CAS  Google Scholar 

  • Chow SA, Vincent KA, Ellison V, Brown PO (1992) Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255:723–726

    Article  CAS  Google Scholar 

  • Coffin JM, Hughes SH, Varmus HE (1977) Retroviruses. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Colicelli J, Goff SP (1985) Mutants and pseudorevertants of Moloney murine leukemia virus with alterations at the integration site. Cell 42:573–580

    Article  CAS  Google Scholar 

  • Craigie R (2012) The molecular biology of HIV integrase. Future Virol 7(7):679–686. https://doi.org/10.2217/fvl.12.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Craigie R, Fujiwara T, Bushman F (1990) The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62:829–837

    Article  CAS  Google Scholar 

  • Debyser Z, Christ F, De Rijck J, Gijsbers R (2015) Host factors for retroviral integration site selection. Trends Biochem Sci 40(2):108–116. https://doi.org/10.1016/j.tibs.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  • Donehower LA, Varmus HE (1984) A mutant murine leukemia virus with a single missense codon in pol is defective in a function affecting integration. Proc Natl Acad Sci U S A 81:6461–6465

    Article  CAS  Google Scholar 

  • Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR (1994) Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266:1981–1986

    Article  CAS  Google Scholar 

  • Eijkelenboom AP, van den Ent FM, Vos A, Doreleijers JF, HÃ¥rd K, Tullius TD, Plasterk RH, Kaptein R, Boelens R (1997) The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Curr Biol 7:739–746

    Article  CAS  Google Scholar 

  • Ellison V, Abrams H, Roe T, Lifson J, Brown P (1990) Human immunodeficiency virus integration in a cell-free system. J Virol 64:2711–2715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman A, Craigie R (1992) Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J Virol 66:6361–6369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Engelman A, Mizuuchi K, Craigie R (1991) HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221

    Article  CAS  Google Scholar 

  • Farnet CM, Haseltine WA (1990) Integration of human immunodeficiency virus type 1 DNA in vitro. Proc Natl Acad Sci U S A 87:4164–4168

    Article  CAS  Google Scholar 

  • Farnet CM, Haseltine WA (1991) Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol 65:1910–1915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiwara T, Craigie R (1989) Integration of mini-retroviral DNA: a cell-free reaction for biochemical analysis of retroviral integration. Proc Natl Acad Sci U S A 86:3065–3069

    Article  CAS  Google Scholar 

  • Fujiwara T, Mizuuchi K (1988) Retroviral DNA integration: structure of an integration intermediate. Cell 54:497–504

    Article  CAS  Google Scholar 

  • Grandgenett DP, Vora AC, Schiff RD (1978) A 32,000-dalton nucleic acid-binding protein from avian retrovirus cores possesses DNA endonuclease activity. Virology 89:119–132

    Article  CAS  Google Scholar 

  • Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010a) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232–236

    Article  CAS  Google Scholar 

  • Hare S, Maertens GN, Cherepanov P (2012) 3 '-processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J 31(13):3020–3028. https://doi.org/10.1038/emboj.2012.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare S, Shun MC, Gupta SS, Valkov E, Engelman A, Cherepanov P (2009) A novel co-crystal structure afords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75. PLoS Pathog 5(1):e1000259. https://doi.org/10.1371/journal.ppat.1000259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P (2010b) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A 107(46):20057–20062. https://doi.org/10.1073/pnas.1010246107

    Article  PubMed  PubMed Central  Google Scholar 

  • Hindmarsh P, Leis J (1999) Reconstitution of concerted DNA integration with purified components. In: Advances in virus research, Vol 52, vol 52. Advances in virus research, pp 397–410

    Chapter  Google Scholar 

  • Jaskolski M, Alexandratos JN, Bujacz G, Wlodawer A (2009) Piecing together the structure of retroviral integrase, an important target in AIDS therapy. FEBS J 276(11):2926–2946. https://doi.org/10.1111/j.1742-4658.2009.07009.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins TM, Hickman AB, Dyda F, Ghirlando R, Davies DR, Craigie R (1995) Catalytic domain of human immunodeficiency virus type 1 integrase: identification of a soluble mutant by systematic replacement of hydrophobic residues. Proc Natl Acad Sci U S A 92:6057–6061

    Article  CAS  Google Scholar 

  • Johnson BC, Metifiot M, Ferris A, Pommier Y, Hughes SH (2013) A homology model of HIV-1 integrase and analysis of mutations designed to test the model. J Mol Biol 425(12):2133–2146. https://doi.org/10.1016/j.jmb.2013.03.027

    Article  CAS  PubMed  Google Scholar 

  • Katz RA, Merkel G, Kulkosky J, Leis J, Skalka AM (1990) The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell 63:87–95

    Article  CAS  Google Scholar 

  • Katzman M, Katz RA, Skalka AM, Leis J (1989) The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J Virol 63:5319–5327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnan L, Li XA, Naraharisetty HL, Hare S, Cherepanov P, Engelman A (2010) Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc Natl Acad Sci U S A 107(36):15910–15915. https://doi.org/10.1073/pnas.1002346107

    Article  PubMed  PubMed Central  Google Scholar 

  • Kulkosky J, Jones KS, Katz RA, Mack JP, Skalka AM (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12:2331–2338

    Article  CAS  Google Scholar 

  • Leavitt AD, Shiue L, Varmus HE (1993) Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. J Biol Chem 268:2113–2119

    CAS  PubMed  Google Scholar 

  • Lee MS, Craigie R (1994) Protection of retroviral DNA from autointegration: involvement of a cellular factor. Proc Natl Acad Sci U S A 91:9823–9827

    Article  CAS  Google Scholar 

  • Li L, Olvera JM, Yoder KE, Mitchell RS, Butler SL, Lieber M, Martin SL, Bushman FD (2001) Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 20(12):3272–3281

    Article  CAS  Google Scholar 

  • Li M, Craigie R (2005) Processing the viral DNA ends channels the HIV-1 integration reaction to concerted integration. J Biol Chem 280:29334–29339

    Article  CAS  Google Scholar 

  • Li M, Jurado KA, Lin S, Engelman A, Craigie R (2014) Engineered hyperactive Integrase for concerted HIV-1 DNA integration. PLoS One 9(8). https://doi.org/10.1371/journal.pone.0105078

    Article  Google Scholar 

  • Li M, Mizuuchi M, Burke TR, Craigie R (2006) Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J 25(6):1295–1304

    Article  CAS  Google Scholar 

  • Lodi PJ, Ernst JA, Kuszewski J, Hickman AB, Engelman A, Craigie R, Clore GM, Gronenborn AM (1995) Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34:9826–9833

    Article  CAS  Google Scholar 

  • Maertens GN, Hare S, Cherepanov P (2010) The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468(7321):326–329. https://doi.org/10.1038/nature09517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matreyek KA, Engelman A (2013) Viral and cellular requirements for the nuclear entry of retroviral Preintegration nucleoprotein complexes. Viruses-Basel 5(10):2483–2511. https://doi.org/10.3390/v5102483

    Article  CAS  Google Scholar 

  • Pandey KK, Bera S, Zahm J, Vora A, Stillmock K, Hazuda D, Grandgenett DP (2007) Inhibition of human immunodeficiency virus type I concerted integration by strand transfer inhibitors which recognize a transient structural intermediate. J Virol 81(22):12189–12199. https://doi.org/10.1128/jvi.02863-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panganiban AT, Temin HM (1983) The terminal nucleotides of retrovirus DNA are required for integration but not virus production. Nature 306:155–160

    Article  CAS  Google Scholar 

  • Panganiban AT, Temin HM (1984) The retrovirus pol gene encodes a product required for DNA integration: identification of a retrovirus int locus. Proc Natl Acad Sci U S A 81:7885–7889

    Article  CAS  Google Scholar 

  • Passos DO, Li M, Yang RB, Rebensburg SV, Ghirlando R, Jeon Y, Shkriabai N, Kvaratskhelia M, Craigie R, Lyumkis D (2017) Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science 355(6320):89–92. https://doi.org/10.1126/science.aah5163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth MJ, Schwartzberg PL, Goff SP (1989) Structure of the termini of DNA intermediates in the integration of retroviral DNA: dependence on IN function and terminal DNA sequence. Cell 58:47–54

    Article  CAS  Google Scholar 

  • Schwartzberg P, Colicelli J, Goff SP (1984) Construction and analysis of deletion mutations in the pol gene of Moloney murine leukemia virus: a new viral function required for productive infection. Cell 37:1043–1052

    Article  CAS  Google Scholar 

  • Sherman PA, Fyfe JA (1990) Human immunodeficiency virus integration protein expressed in Escherichia Coli possesses selective DNA cleaving activity. Proc Natl Acad Sci U S A 87:5119–5123

    Article  CAS  Google Scholar 

  • Sinha S, Grandgenett DP (2005) Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells. J Virol 79(13):8208–8216

    Article  CAS  Google Scholar 

  • Sinha S, Pursley MH, Grandgenett DP (2002) Efficient concerted integration by recombinant human immunodeficiency virus type 1 integrase without cellular or viral cofactors. J Virol 76(7):3105–3113

    Article  CAS  Google Scholar 

  • Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P (2009) Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res 37(1):243–255. https://doi.org/10.1093/nar/gkn938

    Article  CAS  PubMed  Google Scholar 

  • van Gent DC, Groeneger AA, Plasterk RH (1992) Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proc Natl Acad Sci U S A 89:9598–9602

    Article  Google Scholar 

  • Wang JY, Ling H, Yang W, Craigie R (2001) Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J 20(24):7333–7343

    Article  CAS  Google Scholar 

  • Yang W, Hendrickson WA, Crouch RJ, Satow Y (1990) Structure of ribonuclease H phased at 2 a resolution by MAD analysis of the selenomethionyl protein. Science 249:1398–1405

    Article  CAS  Google Scholar 

  • Yin Z, Lapkouski M, Yang W, Craigie R (2012) Assembly of prototype foamy virus strand transfer complexes on product DNA bypassing catalysis of integration. Protein Sci 21(12):1849–1857

    Article  CAS  Google Scholar 

  • Yin Z, Shi K, Banerjee S, Pandey KK, Bera S, Grandgenett DP, Aihara H (2016) Crystal structure of the Rous sarcoma virus intasome. Nature 530 (7590):362−+. https://doi.org/10.1038/nature16950

    Article  CAS  Google Scholar 

  • Yoder KE, Bushman FD (2000) Repair of gaps in retroviral DNA integration intermediates. J Virol 74(23):11191–11200. https://doi.org/10.1128/jvi.74.23.11191-11200.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng R, Jenkins TM, Craigie R (1996) Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc Natl Acad Sci U S A 93:13659–13664

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Alan Engelman and Wei Yang for valuable input to the manuscript. This work was supported by the Intramural Program of the National Institute of Diabetes and Digestive Diseases of the National Institutes of Health and by the Intramural AIDS Targeted Antiviral Program of the Office of the Director of the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Craigie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Craigie, R. (2018). Nucleoprotein Intermediates in HIV-1 DNA Integration: Structure and Function of HIV-1 Intasomes. In: Harris, J., Bhella, D. (eds) Virus Protein and Nucleoprotein Complexes. Subcellular Biochemistry, vol 88. Springer, Singapore. https://doi.org/10.1007/978-981-10-8456-0_9

Download citation

Publish with us

Policies and ethics