Advertisement

Nucleoprotein Intermediates in HIV-1 DNA Integration: Structure and Function of HIV-1 Intasomes

Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 88)

Abstract

Integration of a DNA copy of the viral genome into host DNA is an essential step in the replication cycle of HIV-1 and other retroviruses and is an important therapeutic target for drugs. DNA integration is catalyzed by the viral integrase protein and proceeds through a series of stable nucleoprotein complexes of integrase, viral DNA ends and target DNA. These nucleoprotein complexes are collectively called intasomes. Retroviral intasomes undergo a series of transitions between initial formation and catalysis of the DNA cutting and joining steps of DNA integration. Intasomes, rather than free integrase protein, are the target of currently approved drugs that target HIV-1 DNA integration. High-resolution structures of HIV-1 intasomes are needed to understand their detailed mechanism of action and how HIV-1 may escape by developing resistance. Here, we focus on our current knowledge of the structure and function of HIV-1 intasomes, with reference to related systems as required to put this knowledge in context.

Keywords

HIV-1 DNA integration Genome Nucleoprotein intermediates Retroviruses Retrotransposons Transposons 

Notes

Acknowledgments

We thank Alan Engelman and Wei Yang for valuable input to the manuscript. This work was supported by the Intramural Program of the National Institute of Diabetes and Digestive Diseases of the National Institutes of Health and by the Intramural AIDS Targeted Antiviral Program of the Office of the Director of the NIH.

References

  1. Ariyoshi M, Vassylyev DG, Iwasaki H, Nakamura H, Shinagawa H, Morikawa K (1994) Atomic structure of the RuvC resolvase: a holliday junction-specific endonuclease from E. Coli. Cell 78:1063–1072CrossRefGoogle Scholar
  2. Ballandras-Colas A, Browne M, Cook NJ, Dewdney TG, Domeler B, Cherepanov P, Lyumkis D, Engelman AN (2016) Cryo-EM reveals a novel octameric integrase structure for betaretroviral intasome function. Nature 530(7590):358.  https://doi.org/10.1038/nature16955 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ballandras-Colas A, Maskell DP, Serrao E, Locke J, Swuec P, Jonsson SR, Kotecha A, Cook NJ, Pye VE, Taylor IA, Andresdottir V, Engelman AN, Costa A, Cherepanov P (2017) A supramolecular assembly mediates lentiviral DNA integration. Science 355(6320):93–95.  https://doi.org/10.1126/science.aah7002 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bowerman B, Brown PO, Bishop JM, Varmus HE (1989) A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev 3:469–478CrossRefGoogle Scholar
  5. Brown PO, Bowerman B, Varmus HE, Bishop JM (1987) Correct integration of retroviral DNA in vitro. Cell 49:347–356CrossRefGoogle Scholar
  6. Brown PO, Bowerman B, Varmus HE, Bishop JM (1989) Retroviral integration: structure of the initial covalent product and its precursor, and a role for the viral IN protein. Proc Natl Acad Sci U S A 86:2525–2529CrossRefGoogle Scholar
  7. Bukrinsky MI, Sharova N, McDonald TL, Pushkarskaya T, Tarpley WG, Stevenson M (1993) Association of integrase, matrix, and reverse transcriptase antigens of human immunodeficiency virus type 1 with viral nucleic acids following acute infection. Proc Natl Acad Sci U S A 90:6125–6129CrossRefGoogle Scholar
  8. Bushman FD, Fujiwara T, Craigie R (1990) Retroviral DNA integration directed by HIV integration protein in vitro. Science 249:1555–1558CrossRefGoogle Scholar
  9. Cai M, Zheng R, Caffrey M, Craigie R, Clore GM, Gronenborn AM (1997) Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat Struct Biol 4:567–577CrossRefGoogle Scholar
  10. Chen JCH, Krucinski J, Miercke LJW, Finer-Moore JS, Tang AH, Leavitt AD, Stroud RM (2000a) Crystal structure of the HIV-1 integrase catalytic core and C- terminal domains: a model for viral DNA binding. Proc Natl Acad Sci U S A 97:8233–8238CrossRefGoogle Scholar
  11. Chen ZG, Yan YW, Munshi S, Li Y, Zugay-Murphy J, Xu B, Witmer M, Felock P, Wolfe A, Sardana V, Emini EA, Hazuda D, Kuo LC (2000b) X-ray structure of simian immunodeficiency virus integrase containing the core and C-terminal domain (residues 50-293) - an initial glance of the viral DNA binding platform. J Mol Biol 296:521–533CrossRefGoogle Scholar
  12. Chow SA, Vincent KA, Ellison V, Brown PO (1992) Reversal of integration and DNA splicing mediated by integrase of human immunodeficiency virus. Science 255:723–726CrossRefGoogle Scholar
  13. Coffin JM, Hughes SH, Varmus HE (1977) Retroviruses. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  14. Colicelli J, Goff SP (1985) Mutants and pseudorevertants of Moloney murine leukemia virus with alterations at the integration site. Cell 42:573–580CrossRefGoogle Scholar
  15. Craigie R (2012) The molecular biology of HIV integrase. Future Virol 7(7):679–686.  https://doi.org/10.2217/fvl.12.56 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Craigie R, Fujiwara T, Bushman F (1990) The IN protein of Moloney murine leukemia virus processes the viral DNA ends and accomplishes their integration in vitro. Cell 62:829–837CrossRefGoogle Scholar
  17. Debyser Z, Christ F, De Rijck J, Gijsbers R (2015) Host factors for retroviral integration site selection. Trends Biochem Sci 40(2):108–116.  https://doi.org/10.1016/j.tibs.2014.12.001 CrossRefPubMedGoogle Scholar
  18. Donehower LA, Varmus HE (1984) A mutant murine leukemia virus with a single missense codon in pol is defective in a function affecting integration. Proc Natl Acad Sci U S A 81:6461–6465CrossRefGoogle Scholar
  19. Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR (1994) Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266:1981–1986CrossRefGoogle Scholar
  20. Eijkelenboom AP, van den Ent FM, Vos A, Doreleijers JF, Hård K, Tullius TD, Plasterk RH, Kaptein R, Boelens R (1997) The solution structure of the amino-terminal HHCC domain of HIV-2 integrase: a three-helix bundle stabilized by zinc. Curr Biol 7:739–746CrossRefGoogle Scholar
  21. Ellison V, Abrams H, Roe T, Lifson J, Brown P (1990) Human immunodeficiency virus integration in a cell-free system. J Virol 64:2711–2715PubMedPubMedCentralGoogle Scholar
  22. Engelman A, Craigie R (1992) Identification of conserved amino acid residues critical for human immunodeficiency virus type 1 integrase function in vitro. J Virol 66:6361–6369PubMedPubMedCentralGoogle Scholar
  23. Engelman A, Mizuuchi K, Craigie R (1991) HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221CrossRefGoogle Scholar
  24. Farnet CM, Haseltine WA (1990) Integration of human immunodeficiency virus type 1 DNA in vitro. Proc Natl Acad Sci U S A 87:4164–4168CrossRefGoogle Scholar
  25. Farnet CM, Haseltine WA (1991) Determination of viral proteins present in the human immunodeficiency virus type 1 preintegration complex. J Virol 65:1910–1915PubMedPubMedCentralGoogle Scholar
  26. Fujiwara T, Craigie R (1989) Integration of mini-retroviral DNA: a cell-free reaction for biochemical analysis of retroviral integration. Proc Natl Acad Sci U S A 86:3065–3069CrossRefGoogle Scholar
  27. Fujiwara T, Mizuuchi K (1988) Retroviral DNA integration: structure of an integration intermediate. Cell 54:497–504CrossRefGoogle Scholar
  28. Grandgenett DP, Vora AC, Schiff RD (1978) A 32,000-dalton nucleic acid-binding protein from avian retrovirus cores possesses DNA endonuclease activity. Virology 89:119–132CrossRefGoogle Scholar
  29. Hare S, Gupta SS, Valkov E, Engelman A, Cherepanov P (2010a) Retroviral intasome assembly and inhibition of DNA strand transfer. Nature 464:232–236CrossRefGoogle Scholar
  30. Hare S, Maertens GN, Cherepanov P (2012) 3 '-processing and strand transfer catalysed by retroviral integrase in crystallo. EMBO J 31(13):3020–3028.  https://doi.org/10.1038/emboj.2012.118 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hare S, Shun MC, Gupta SS, Valkov E, Engelman A, Cherepanov P (2009) A novel co-crystal structure afords the design of gain-of-function lentiviral integrase mutants in the presence of modified PSIP1/LEDGF/p75. PLoS Pathog 5(1):e1000259.  https://doi.org/10.1371/journal.ppat.1000259 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hare S, Vos AM, Clayton RF, Thuring JW, Cummings MD, Cherepanov P (2010b) Molecular mechanisms of retroviral integrase inhibition and the evolution of viral resistance. Proc Natl Acad Sci U S A 107(46):20057–20062.  https://doi.org/10.1073/pnas.1010246107 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hindmarsh P, Leis J (1999) Reconstitution of concerted DNA integration with purified components. In: Advances in virus research, Vol 52, vol 52. Advances in virus research, pp 397–410CrossRefGoogle Scholar
  34. Jaskolski M, Alexandratos JN, Bujacz G, Wlodawer A (2009) Piecing together the structure of retroviral integrase, an important target in AIDS therapy. FEBS J 276(11):2926–2946.  https://doi.org/10.1111/j.1742-4658.2009.07009.x CrossRefPubMedPubMedCentralGoogle Scholar
  35. Jenkins TM, Hickman AB, Dyda F, Ghirlando R, Davies DR, Craigie R (1995) Catalytic domain of human immunodeficiency virus type 1 integrase: identification of a soluble mutant by systematic replacement of hydrophobic residues. Proc Natl Acad Sci U S A 92:6057–6061CrossRefGoogle Scholar
  36. Johnson BC, Metifiot M, Ferris A, Pommier Y, Hughes SH (2013) A homology model of HIV-1 integrase and analysis of mutations designed to test the model. J Mol Biol 425(12):2133–2146.  https://doi.org/10.1016/j.jmb.2013.03.027 CrossRefPubMedGoogle Scholar
  37. Katz RA, Merkel G, Kulkosky J, Leis J, Skalka AM (1990) The avian retroviral IN protein is both necessary and sufficient for integrative recombination in vitro. Cell 63:87–95CrossRefGoogle Scholar
  38. Katzman M, Katz RA, Skalka AM, Leis J (1989) The avian retroviral integration protein cleaves the terminal sequences of linear viral DNA at the in vivo sites of integration. J Virol 63:5319–5327PubMedPubMedCentralGoogle Scholar
  39. Krishnan L, Li XA, Naraharisetty HL, Hare S, Cherepanov P, Engelman A (2010) Structure-based modeling of the functional HIV-1 intasome and its inhibition. Proc Natl Acad Sci U S A 107(36):15910–15915.  https://doi.org/10.1073/pnas.1002346107 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kulkosky J, Jones KS, Katz RA, Mack JP, Skalka AM (1992) Residues critical for retroviral integrative recombination in a region that is highly conserved among retroviral/retrotransposon integrases and bacterial insertion sequence transposases. Mol Cell Biol 12:2331–2338CrossRefGoogle Scholar
  41. Leavitt AD, Shiue L, Varmus HE (1993) Site-directed mutagenesis of HIV-1 integrase demonstrates differential effects on integrase functions in vitro. J Biol Chem 268:2113–2119PubMedGoogle Scholar
  42. Lee MS, Craigie R (1994) Protection of retroviral DNA from autointegration: involvement of a cellular factor. Proc Natl Acad Sci U S A 91:9823–9827CrossRefGoogle Scholar
  43. Li L, Olvera JM, Yoder KE, Mitchell RS, Butler SL, Lieber M, Martin SL, Bushman FD (2001) Role of the non-homologous DNA end joining pathway in the early steps of retroviral infection. EMBO J 20(12):3272–3281CrossRefGoogle Scholar
  44. Li M, Craigie R (2005) Processing the viral DNA ends channels the HIV-1 integration reaction to concerted integration. J Biol Chem 280:29334–29339CrossRefGoogle Scholar
  45. Li M, Jurado KA, Lin S, Engelman A, Craigie R (2014) Engineered hyperactive Integrase for concerted HIV-1 DNA integration. PLoS One 9(8).  https://doi.org/10.1371/journal.pone.0105078 CrossRefGoogle Scholar
  46. Li M, Mizuuchi M, Burke TR, Craigie R (2006) Retroviral DNA integration: reaction pathway and critical intermediates. EMBO J 25(6):1295–1304CrossRefGoogle Scholar
  47. Lodi PJ, Ernst JA, Kuszewski J, Hickman AB, Engelman A, Craigie R, Clore GM, Gronenborn AM (1995) Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34:9826–9833CrossRefGoogle Scholar
  48. Maertens GN, Hare S, Cherepanov P (2010) The mechanism of retroviral integration from X-ray structures of its key intermediates. Nature 468(7321):326–329.  https://doi.org/10.1038/nature09517 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Matreyek KA, Engelman A (2013) Viral and cellular requirements for the nuclear entry of retroviral Preintegration nucleoprotein complexes. Viruses-Basel 5(10):2483–2511.  https://doi.org/10.3390/v5102483 CrossRefGoogle Scholar
  50. Pandey KK, Bera S, Zahm J, Vora A, Stillmock K, Hazuda D, Grandgenett DP (2007) Inhibition of human immunodeficiency virus type I concerted integration by strand transfer inhibitors which recognize a transient structural intermediate. J Virol 81(22):12189–12199.  https://doi.org/10.1128/jvi.02863-06 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Panganiban AT, Temin HM (1983) The terminal nucleotides of retrovirus DNA are required for integration but not virus production. Nature 306:155–160CrossRefGoogle Scholar
  52. Panganiban AT, Temin HM (1984) The retrovirus pol gene encodes a product required for DNA integration: identification of a retrovirus int locus. Proc Natl Acad Sci U S A 81:7885–7889CrossRefGoogle Scholar
  53. Passos DO, Li M, Yang RB, Rebensburg SV, Ghirlando R, Jeon Y, Shkriabai N, Kvaratskhelia M, Craigie R, Lyumkis D (2017) Cryo-EM structures and atomic model of the HIV-1 strand transfer complex intasome. Science 355(6320):89–92.  https://doi.org/10.1126/science.aah5163 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Roth MJ, Schwartzberg PL, Goff SP (1989) Structure of the termini of DNA intermediates in the integration of retroviral DNA: dependence on IN function and terminal DNA sequence. Cell 58:47–54CrossRefGoogle Scholar
  55. Schwartzberg P, Colicelli J, Goff SP (1984) Construction and analysis of deletion mutations in the pol gene of Moloney murine leukemia virus: a new viral function required for productive infection. Cell 37:1043–1052CrossRefGoogle Scholar
  56. Sherman PA, Fyfe JA (1990) Human immunodeficiency virus integration protein expressed in Escherichia Coli possesses selective DNA cleaving activity. Proc Natl Acad Sci U S A 87:5119–5123CrossRefGoogle Scholar
  57. Sinha S, Grandgenett DP (2005) Recombinant human immunodeficiency virus type 1 integrase exhibits a capacity for full-site integration in vitro that is comparable to that of purified preintegration complexes from virus-infected cells. J Virol 79(13):8208–8216CrossRefGoogle Scholar
  58. Sinha S, Pursley MH, Grandgenett DP (2002) Efficient concerted integration by recombinant human immunodeficiency virus type 1 integrase without cellular or viral cofactors. J Virol 76(7):3105–3113CrossRefGoogle Scholar
  59. Valkov E, Gupta SS, Hare S, Helander A, Roversi P, McClure M, Cherepanov P (2009) Functional and structural characterization of the integrase from the prototype foamy virus. Nucleic Acids Res 37(1):243–255.  https://doi.org/10.1093/nar/gkn938 CrossRefPubMedGoogle Scholar
  60. van Gent DC, Groeneger AA, Plasterk RH (1992) Mutational analysis of the integrase protein of human immunodeficiency virus type 2. Proc Natl Acad Sci U S A 89:9598–9602CrossRefGoogle Scholar
  61. Wang JY, Ling H, Yang W, Craigie R (2001) Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein. EMBO J 20(24):7333–7343CrossRefGoogle Scholar
  62. Yang W, Hendrickson WA, Crouch RJ, Satow Y (1990) Structure of ribonuclease H phased at 2 a resolution by MAD analysis of the selenomethionyl protein. Science 249:1398–1405CrossRefGoogle Scholar
  63. Yin Z, Lapkouski M, Yang W, Craigie R (2012) Assembly of prototype foamy virus strand transfer complexes on product DNA bypassing catalysis of integration. Protein Sci 21(12):1849–1857CrossRefGoogle Scholar
  64. Yin Z, Shi K, Banerjee S, Pandey KK, Bera S, Grandgenett DP, Aihara H (2016) Crystal structure of the Rous sarcoma virus intasome. Nature 530 (7590):362−+.  https://doi.org/10.1038/nature16950 CrossRefGoogle Scholar
  65. Yoder KE, Bushman FD (2000) Repair of gaps in retroviral DNA integration intermediates. J Virol 74(23):11191–11200.  https://doi.org/10.1128/jvi.74.23.11191-11200.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Zheng R, Jenkins TM, Craigie R (1996) Zinc folds the N-terminal domain of HIV-1 integrase, promotes multimerization, and enhances catalytic activity. Proc Natl Acad Sci U S A 93:13659–13664CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaUSA

Personalised recommendations