Advertisement

The Retrovirus Capsid Core

  • Wei Zhang
  • Luiza Mendonça
  • Louis L. Mansky
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 88)

Abstract

The retrovirus capsid core is a metastable structure that disassembles during the early phase of viral infection after membrane fusion. The core is intact and permeable to essential nucleotides during reverse transcription, but it undergoes disassembly for nuclear entry and genome integration. Increasing or decreasing the stability of the capsid core has a substantial negative impact on virus infectivity, which makes the core an attractive anti-viral target. The retrovirus capsid core also encounters a variety of virus- and organism-specific host cellular factors that promote or restrict viral replication. This review describes the structural elements fundamental to the formation and stability of the capsid core. The physical and chemical properties of the capsid core that are critical to its functional role in reverse transcription and interaction with host cellular factors are highlighted to emphasize areas of current research.

Keywords

Retrovirus Comparative Maturation Capsid Capsomer Virus-host interaction Restriction factor 

Notes

Acknowledgment

This work is supported by NIH grants R01 GM098550 and R01 GM124279. We thank Dr. Juan Perilla for providing the figures that show the all-atom fitting model of CA in a HIV-1 capsid core structure.

References

  1. Alvarez FJD, He S, Perilla JR, Jang S, Schulten K, Engelman AN, Scheres SHW, Zhang P (2017) CryoEM structure of MxB reveals a novel oligomerization interface critical for HIV restriction. Sci Adv 3(9):e1701264CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ambrose Z, Aiken C (2014) HIV-1 uncoating: connection to nuclear entry and regulation by host proteins. Virology 454-455:371–379CrossRefPubMedGoogle Scholar
  3. Bailey GD, Hyun JK, Mitra AK, Kingston RL (2012) A structural model for the generation of continuous curvature on the surface of a retroviral capsid. J Mol Biol 417(3):212–223CrossRefPubMedGoogle Scholar
  4. Bartonova V, Igonet S, Sticht J, Glass B, Habermann A, Vaney MC, Sehr P, Lewis J, Rey FA, Krausslich HG (2008) Residues in the HIV-1 capsid assembly inhibitor binding site are essential for maintaining the assembly-competent quaternary structure of the capsid protein. J Biol Chem 283(46):32024–32033CrossRefPubMedGoogle Scholar
  5. Bharat TA, Davey NE, Ulbrich P, Riches JD, de Marco A, Rumlova M, Sachse C, Ruml T, Briggs JA (2012) Structure of the immature retroviral capsid at 8 a resolution by cryo-electron microscopy. Nature 487(7407):385–389CrossRefPubMedGoogle Scholar
  6. Bhattacharya A, Alam SL, Fricke T, Zadrozny K, Sedzicki J, Taylor AB, Demeler B, Pornillos O, Ganser-Pornillos BK, Diaz-Griffero F, Ivanov DN, Yeager M (2014) Structural basis of HIV-1 capsid recognition by PF74 and CPSF6. Proc Natl Acad Sci U S A 111(52):18625–18630CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bichel K, Price AJ, Schaller T, Towers GJ, Freund SM, James LC (2013) HIV-1 capsid undergoes coupled binding and isomerization by the nuclear pore protein NUP358. Retrovirology 10:81CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bieniasz PD, Weiss RA, McClure MO (1995) Cell cycle dependence of foamy retrovirus infection. J Virol 69(11):7295–7299PubMedPubMedCentralGoogle Scholar
  9. Black LR, Aiken C (2010) TRIM5alpha disrupts the structure of assembled HIV-1 capsid complexes in vitro. J Virol 84(13):6564–6569CrossRefPubMedPubMedCentralGoogle Scholar
  10. Briggs JA, Johnson MC, Simon MN, Fuller SD, Vogt VM (2006) Cryo-electron microscopy reveals conserved and divergent features of gag packing in immature particles of Rous sarcoma virus and human immunodeficiency virus. J Mol Biol 355(1):157–168CrossRefPubMedGoogle Scholar
  11. Briggs JA, Riches JD, Glass B, Bartonova V, Zanetti G, Krausslich HG (2009) Structure and assembly of immature HIV. Proc Natl Acad Sci U S A 106(27):11090–11095CrossRefPubMedPubMedCentralGoogle Scholar
  12. Briggs JA, Watson BE, Gowen BE, Fuller SD (2004) Cryoelectron microscopy of mouse mammary tumor virus. J Virol 78(5):2606–2608CrossRefPubMedPubMedCentralGoogle Scholar
  13. Byeon IJ, Meng X, Jung J, Zhao G, Yang R, Ahn J, Shi J, Concel J, Aiken C, Zhang P, Gronenborn AM (2009) Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139(4):780–790CrossRefPubMedPubMedCentralGoogle Scholar
  14. Campbell EM, Hope TJ (2015) HIV-1 capsid: the multifaceted key player in HIV-1 infection. Nat Rev Microbiol 13(8):471–483CrossRefPubMedPubMedCentralGoogle Scholar
  15. Campos-Olivas R, Newman JL, Summers MF (2000) Solution structure and dynamics of the Rous sarcoma virus capsid protein and comparison with capsid proteins of other retroviruses. J Mol Biol 296(2):633–649CrossRefPubMedGoogle Scholar
  16. Cao S, Maldonado JO, Grigsby IF, Mansky LM, Zhang W (2015) Analysis of human T-cell leukemia virus type 1 particles by using cryo-electron tomography. J Virol 89(4):2430–2435CrossRefPubMedGoogle Scholar
  17. Cardone G, Purdy JG, Cheng N, Craven RC, Steven AC (2009) Visualization of a missing link in retrovirus capsid assembly. Nature 457(7230):694–698CrossRefPubMedPubMedCentralGoogle Scholar
  18. Christopher A, Peijun Z (2013) HIV-1 Maturation. In: Freed EO (ed) Advances in HIV-1 Assembly and Release. Springer, pp 153–166Google Scholar
  19. Cornilescu CC, Bouamr F, Yao X, Carter C, Tjandra N (2001) Structural analysis of the N-terminal domain of the human T-cell leukemia virus capsid protein. J Mol Biol 306(4):783–797CrossRefPubMedGoogle Scholar
  20. Enssle J, Jordan I, Mauer B, Rethwilm A (1996) Foamy virus reverse transcriptase is expressed independently from the gag protein. Proc Natl Acad Sci U S A 93(9):4137–4141CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fribourgh JL, Nguyen HC, Matreyek KA, Alvarez FJD, Summers BJ, Dewdney TG, Aiken C, Zhang P, Engelman A, Xiong Y (2014) Structural insight into HIV-1 restriction by MxB. Cell Host Microbe 16(5):627–638CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fricke T, White TE, Schulte B, de Souza Aranha DA, Vieira AD, Campbell EM, Brandariz-Nunez A, Diaz-Griffero F (2014) MxB binds to the HIV-1 core and prevents the uncoating process of HIV-1. Retrovirology 11:68CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP (1996) Crystal structure of human cyclophilin a bound to the amino-terminal domain of HIV-1 capsid. Cell 87(7):1285–1294CrossRefPubMedGoogle Scholar
  24. Ganser BK, Li S, Klishko VY, Finch JT, Sundquist WI (1999) Assembly and analysis of conical models for the HIV-1 core. Science 283(5398):80–83CrossRefPubMedGoogle Scholar
  25. Ganser-Pornillos BK, Chandrasekaran V, Pornillos O, Sodroski JG, Sundquist WI, Yeager M (2011) Hexagonal assembly of a restricting TRIM5alpha protein. Proc Natl Acad Sci U S A 108(2):534–539CrossRefPubMedGoogle Scholar
  26. Goldstone DC, Walker PA, Calder LJ, Coombs PJ, Kirkpatrick J, Ball NJ, Hilditch L, Yap MW, Rosenthal PB, Stoye JP, Taylor IA (2014) Structural studies of postentry restriction factors reveal antiparallel dimers that enable avid binding to the HIV-1 capsid lattice. Proc Natl Acad Sci U S A 111(26):9609–9614CrossRefPubMedPubMedCentralGoogle Scholar
  27. Goudreau N, Lemke CT, Faucher AM, Grand-Maitre C, Goulet S, Lacoste JE, Rancourt J, Malenfant E, Mercier JF, Titolo S, Mason SW (2013) Novel inhibitor binding site discovery on HIV-1 capsid N-terminal domain by NMR and X-ray crystallography. ACS Chem Biol 8(5):1074–1082CrossRefPubMedGoogle Scholar
  28. Gres AT, Kirby KA, KewalRamani VN, Tanner JJ, Pornillos O, Sarafianos SG (2015) STRUCTURAL VIROLOGY. X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science 349(6243):99–103CrossRefPubMedPubMedCentralGoogle Scholar
  29. Grime JM, Dama JF, Ganser-Pornillos BK, Woodward CL, Jensen GJ, Yeager M, Voth GA (2016) Coarse-grained simulation reveals key features of HIV-1 capsid self-assembly. Nat Commun 7:11568CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hadravová R, de Marco A, Ulbrich P, Stokrova J, Dolezal M, Pichova I, Ruml T, Briggs JA, Rumlova M (2012) In vitro assembly of virus-like particles of a gammaretrovirus, the murine leukemia virus XMRV. J Virol 86(3):1297–1306CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hamann MV, Mullers E, Reh J, Stanke N, Effantin G, Weissenhorn W, Lindemann D (2014) The cooperative function of arginine residues in the prototype foamy virus gag C-terminus mediates viral and cellular RNA encapsidation. Retrovirology 11:87CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hatziioannou T, Goff SP (2001) Infection of nondividing cells by Rous sarcoma virus. J Virol 75(19):9526–9531CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hilditch L, Towers GJ (2014) A model for cofactor use during HIV-1 reverse transcription and nuclear entry. Curr Opin Virol 4:32–36CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hu WS, Hughes SH (2012) HIV-1 reverse transcription. Cold Spring Harb Perspect Med 2(10)CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ikeda Y, Ylinen LM, Kahar-Bador M, Towers GJ (2004) Influence of gag on human immunodeficiency virus type 1 species-specific tropism. J Virol 78(21):11816–11822CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jaballah SA, Bailey GD, Desfosses A, Hyun J, Mitra AK, Kingston RL (2017) In vitro assembly of the Roeus Sarcoma Virus capsid protein into hexamer tubes at physiological temperature. Sci Rep 7(1):2913CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jacques DA, McEwan WA, Hilditch L, Price AJ, Towers GJ, James LC (2016) HIV-1 uses dynamic capsid pores to import nucleotides and fuel encapsidated DNA synthesis. Nature 536(7616):349–353CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kane M, Yadav SS, Bitzegeio J, Kutluay SB, Zang T, Wilson SJ, Schoggins JW, Rice CM, Yamashita M, Hatziioannou T, Bieniasz PD (2013) MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502(7472):563–566CrossRefPubMedPubMedCentralGoogle Scholar
  39. Katz RA, Greger JG, Darby K, Boimel P, Rall GF, Skalka AM (2002) Transduction of interphase cells by avian sarcoma virus. J Virol 76(11):5422–5434CrossRefPubMedPubMedCentralGoogle Scholar
  40. Ke H, Mayrose D, Belshaw PJ, Alberg DG, Schreiber SL, Chang ZY, Etzkorn FA, Ho S, Walsh CT (1994) Crystal structures of cyclophilin a complexed with cyclosporin A and N-methyl-4-[(E)-2-butenyl]-4,4-dimethylthreonine cyclosporin A. Structure 2(1):33–44CrossRefPubMedGoogle Scholar
  41. Khorasanizadeh S, Campos-Olivas R, Clark CA, Summers MF (1999) Sequence-specific 1H, 13C and 15N chemical shift assignment and secondary structure of the HTLV-I capsid protein. J Biomol NMR 14(2):199–200CrossRefPubMedGoogle Scholar
  42. Kingston RL, Fitzon-Ostendorp T, Eisenmesser EZ, Schatz GW, Vogt VM, Post CB, Rossmann MG (2000) Structure and self-association of the Rous sarcoma virus capsid protein. Structure 8(6):617–628CrossRefPubMedGoogle Scholar
  43. Konstantoulas CJ, Indik S (2014) Mouse mammary tumor virus-based vector transduces non-dividing cells, enters the nucleus via a TNPO3-independent pathway and integrates in a less biased fashion than other retroviruses. Retrovirology 11:34CrossRefPubMedPubMedCentralGoogle Scholar
  44. Li S, Hill CP, Sundquist WI, Finch JT (2000) Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407(6802):409–413CrossRefPubMedGoogle Scholar
  45. Li YL, Chandrasekaran V, Carter SD, Woodward CL, Christensen DE, Dryden KA, Pornillos O, Yeager M, Ganser-Pornillos BK, Jensen GJ, Sundquist WI (2016) Primate TRIM5 proteins form hexagonal nets on HIV-1 capsids. Elife 5Google Scholar
  46. Liu C, Perilla JR, Ning J, Lu M, Hou G, Ramalho R, Himes BA, Zhao G, Bedwell GJ, Byeon IJ, Ahn J, Gronenborn AM, Prevelige PE, Rousso I, Aiken C, Polenova T, Schulten K, Zhang P (2016) Cyclophilin a stabilizes the HIV-1 capsid through a novel non-canonical binding site. Nat Commun 7:10714CrossRefPubMedPubMedCentralGoogle Scholar
  47. Macek P, Chmelik J, Krizova I, Kaderavek P, Padrta P, Zidek L, Wildova M, Hadravova R, Chaloupkova R, Pichova I, Ruml T, Rumlova M, Sklenar V (2009) NMR structure of the N-terminal domain of capsid protein from the mason-pfizer monkey virus. J Mol Biol 392(1):100–114CrossRefPubMedGoogle Scholar
  48. Maldonado JO, Cao S, Zhang W, Mansky LM (2016) Distinct morphology of human T-cell leukemia virus type 1-like particles. Virus 8(5)CrossRefPubMedCentralGoogle Scholar
  49. Mattei S, Glass B, Hagen WJ, Krausslich HG, Briggs JA (2016) The structure and flexibility of conical HIV-1 capsids determined within intact virions. Science 354(6318):1434–1437CrossRefPubMedGoogle Scholar
  50. Meissner ME, Mendonca LM, Zhang W, Mansky LM (2017) Polymorphic nature of human T-cell leukemia virus type 1 particle cores as revealed through characterization of a chronically infected cell line. J Virol 91(16):e00369CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mortuza GB, Dodding MP, Goldstone DC, Haire LF, Stoye JP, Taylor IA (2008) Structure of B-MLV capsid amino-terminal domain reveals key features of viral tropism, gag assembly and core formation. J Mol Biol 376(5):1493–1508CrossRefPubMedGoogle Scholar
  52. Mortuza GB, Haire LF, Stevens A, Smerdon SJ, Stoye JP, Taylor IA (2004) High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431(7007):481–485CrossRefPubMedGoogle Scholar
  53. Pan X, Baldauf HM, Keppler OT, Fackler OT (2013) Restrictions to HIV-1 replication in resting CD4+ T lymphocytes. Cell Res 23(7):876–885CrossRefPubMedPubMedCentralGoogle Scholar
  54. Peng K, Muranyi W, Glass B, Laketa V, Yant SR, Tsai L, Cihlar T, Muller B, Krausslich HG (2014) Quantitative microscopy of functional HIV post-entry complexes reveals association of replication with the viral capsid. Elife 3:e04114CrossRefPubMedPubMedCentralGoogle Scholar
  55. Perilla JR, Gronenborn AM (2016) Molecular architecture of the retroviral capsid. Trends Biochem Sci 41(5):410–420CrossRefPubMedPubMedCentralGoogle Scholar
  56. Perilla JR, Zhao G, Lu M, Ning J, Hou G, Byeon IL, Gronenborn AM, Polenova T, Zhang P (2017) CryoEM structure refinement by integrating NMR chemical shifts with molecular dynamics simulations. J Phys Chem B 121(15):3853–3863CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG, Stout CD, Sundquist WI, Hill CP, Yeager M (2009) X-ray structures of the hexameric building block of the HIV capsid. Cell 137(7):1282–1292CrossRefPubMedPubMedCentralGoogle Scholar
  58. Pornillos O, Ganser-Pornillos BK, Yeager M (2011) Atomic-level modelling of the HIV capsid. Nature 469(7330):424–427CrossRefPubMedPubMedCentralGoogle Scholar
  59. Price AJ, Fletcher AJ, Schaller T, Elliott T, Lee K, KewalRamani VN, Chin JW, Towers GJ, James LC (2012) CPSF6 defines a conserved capsid interface that modulates HIV-1 replication. PLoS Pathog 8(8):e1002896CrossRefPubMedPubMedCentralGoogle Scholar
  60. Price AJ, Jacques DA, McEwan WA, Fletcher AJ, Essig S, Chin JW, Halambage UD, Aiken C, James LC (2014) Host cofactors and pharmacologic ligands share an essential interface in HIV-1 capsid that is lost upon disassembly. PLoS Pathog 10(10):e1004459CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ruegsegger U, Blank D, Keller W (1998) Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Mol Cell 1(2):243–253CrossRefPubMedGoogle Scholar
  62. Sanchez JG, Okreglicka K, Chandrasekaran V, Welker JM, Sundquist WI, Pornillos O (2014) The tripartite motif coiled-coil is an elongated antiparallel hairpin dimer. Proc Natl Acad Sci U S A 111(7):2494–2499CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schaller T, Ocwieja KE, Rasaiyaah J, Price AJ, Brady TL, Roth SL, Hue S, Fletcher AJ, Lee K, KewalRamani VN, Noursadeghi M, Jenner RG, James LC, Bushman FD, Towers GJ (2011) HIV-1 capsid-cyclophilin interactions determine nuclear import pathway, integration targeting and replication efficiency. PLoS Pathog 7(12):e1002439CrossRefPubMedPubMedCentralGoogle Scholar
  64. Schur FK, Hagen WJ, Rumlova M, Ruml T, Muller B, Krausslich HG, Briggs JA (2015) Structure of the immature HIV-1 capsid in intact virus particles at 8.8 a resolution. Nature 517(7535):505–508CrossRefPubMedGoogle Scholar
  65. Schur FK, Obr M, Hagen WJ, Wan W, Jakobi AJ, Kirkpatrick JM, Sachse C, Krausslich HG, Briggs JA (2016) An atomic model of HIV-1 capsid-SP1 reveals structures regulating assembly and maturation. Science 353(6298):506–508CrossRefPubMedGoogle Scholar
  66. Shi J, Zhou J, Shah VB, Aiken C, Whitby K (2011) Small-molecule inhibition of human immunodeficiency virus type 1 infection by virus capsid destabilization. J Virol 85(1):542–549CrossRefPubMedGoogle Scholar
  67. Sokolskaja E, Luban J (2006) Cyclophilin, TRIM5, and innate immunity to HIV-1. Curr Opin Microbiol 9(4):404–408CrossRefPubMedGoogle Scholar
  68. Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in old world monkeys. Nature 427(6977):848–853CrossRefPubMedGoogle Scholar
  69. Sundquist WI, Krausslich HG (2012) HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2(7):a006924CrossRefPubMedPubMedCentralGoogle Scholar
  70. Tang C, Ndassa Y, Summers MF (2002) Structure of the N-terminal 283-residue fragment of the immature HIV-1 gag polyprotein. Nat Struct Biol 9(7):537–543PubMedGoogle Scholar
  71. Towers GJ (2007) The control of viral infection by tripartite motif proteins and cyclophilin a. Retrovirology 4:40CrossRefPubMedPubMedCentralGoogle Scholar
  72. Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD (2003) Cyclophilin a modulates the sensitivity of HIV-1 to host restriction factors. Nat Med 9(9):1138–1143CrossRefPubMedGoogle Scholar
  73. Wagner JM, Roganowicz MD, Skorupka K, Alam SL, Christensen D, Doss G, Wan Y, Frank GA, Ganser-Pornillos BK, Sundquist WI, Pornillos O (2016a) Mechanism of B-box 2 domain-mediated higher-order assembly of the retroviral restriction factor TRIM5alpha. Elife 5Google Scholar
  74. Wagner JM, Zadrozny KK, Chrustowicz J, Purdy MD, Yeager M, Ganser-Pornillos BK, Pornillos O (2016b) Crystal structure of an HIV assembly and maturation switch. Elife 5Google Scholar
  75. Wills JW, Craven RC (1991) Form, function, and use of retroviral gag proteins. AIDS 5(6):639–654CrossRefPubMedGoogle Scholar
  76. Wright ER, Schooler JB, Ding HJ, Kieffer C, Fillmore C, Sundquist WI, Jensen GJ (2007) Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 26(8):2218–2226CrossRefPubMedPubMedCentralGoogle Scholar
  77. Xu B, Kong J, Wang X, Wei W, Xie W, Yu XF (2015) Structural insight into the assembly of human anti-HIV dynamin-like protein MxB/Mx2. Biochem Biophys Res Commun 456(1):197–201CrossRefPubMedGoogle Scholar
  78. Yamashita M, Emerman M (2004) Capsid is a dominant determinant of retrovirus infectivity in nondividing cells. J Virol 78(11):5670–5678CrossRefPubMedPubMedCentralGoogle Scholar
  79. Yang H, Ji X, Zhao G, Ning J, Zhao Q, Aiken C, Gronenborn AM, Zhang P, Xiong Y (2012) Structural insight into HIV-1 capsid recognition by rhesus TRIM5alpha. Proc Natl Acad Sci U S A 109(45):18372–18377CrossRefPubMedPubMedCentralGoogle Scholar
  80. Yap MW, Nisole S, Lynch C, Stoye JP (2004) Trim5alpha protein restricts both HIV-1 and murine leukemia virus. Proc Natl Acad Sci U S A 101(29):10786–10791CrossRefPubMedPubMedCentralGoogle Scholar
  81. Yeager M, Wilson-Kubalek EM, Weiner SG, Brown PO, Rein A (1998) Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: implications for retroviral assembly mechanisms. Proc Natl Acad Sci U S A 95(13):7299–7304CrossRefPubMedPubMedCentralGoogle Scholar
  82. Yudina Z, Roa A, Johnson R, Biris N, de Souza Aranha DA, Vieira VT, Reszka N, Taylor AB, Hart PJ, Demeler B, Diaz-Griffero F, Ivanov DN (2015) RING dimerization links higher-order assembly of TRIM5alpha to synthesis of K63-linked Polyubiquitin. Cell Rep 12(5):788–797CrossRefPubMedPubMedCentralGoogle Scholar
  83. Zhang W, Cao S, Martin JL, Mueller JD, Mansky LM (2015) Morphology and ultrastructure of retrovirus particles. AIMS Biophys 2(3):343–369CrossRefPubMedPubMedCentralGoogle Scholar
  84. Zhao G, Ke D, Vu T, Ahn J, Shah VB, Yang R, Aiken C, Charlton LM, Gronenborn AM, Zhang P (2011) Rhesus TRIM5alpha disrupts the HIV-1 capsid at the inter-hexamer interfaces. PLoS Pathog 7(3):e1002009CrossRefPubMedPubMedCentralGoogle Scholar
  85. Zhao G, Perilla JR, Yufenyuy EL, Meng X, Chen B, Ning J, Ahn J, Gronenborn AM, Schulten K, Aiken C, Zhang P (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497(7451):643–646CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Institute for Molecular Virology, Department of Diagnostic and Biological SciencesUniversity of MinnesotaMinneapolisUSA

Personalised recommendations